Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì x + y = xy
=> x = xy - y
x = ( x - 1 ) y
=. x : y = x - 1 và y khác 0 ( 1 )
Ta lại có: x : y = x + y ( 2 )
Từ 1 và 2
=> x - 1 = x + y
=> y = -1
x = -1 ( x + 1 )
x = -x + 1
=> x + x = 1
2x = 1
x = 1 : 2
x = 1/2
Vậy \(x=\frac{1}{2};y=-1\)
tjm x\(\in\)tap h0p s0 hưu tj:
\(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
nhanh dj....cam 0n nha
2 ( 3x + 7 ) - 5 ( x - 4 ) = 0
=> 2 ( 3x + 7 ) = 5 ( x - 4 )
=> 6x + 14 = 5x - 20
=> x = -20 - 14
=> x = -34
Vậy x = -34
Ta có : |3x - 5| luôn luôn lớn hơn hoặc bằng 0 với mọi x
|8 - 2y| luôn luôn lớn hơn hoặc bằng 0 với mọi x
Mà : |3x - 5| + |8 - 2y| = 0
Nên : |3x - 5| = |8 - 2y| = 0
=> 3x - 5 = 8 - 2y = 0
=> 3x = 5
2y = 8
=> x = 5/3
y = 4
Ta có : |3x - 5| luôn luôn lớn hơn hoặc bằng 0 với mọi x
|8 - 2y| luôn luôn lớn hơn hoặc bằng 0 với mọi x
Mà : |3x - 5| + |8 - 2y| = 0
Nên : |3x - 5| = |8 - 2y| = 0
=> 3x - 5 = 8 - 2y = 0
=> 3x = 5
2y = 8
=> x = 5/3
y = 4
Bài 1 :
\(3x+5=2\left(x-\frac{1}{4}\right)\)
\(\Leftrightarrow3x+5=2x-\frac{1}{2}\)
\(\Leftrightarrow5+\frac{1}{2}=2x-3x\)
\(\Leftrightarrow\frac{11}{2}=-x\)
\(\Leftrightarrow\frac{-11}{2}=x\)
Vậy \(x=\frac{-11}{2}\)
Bài 2:
a, \(\left|x+\frac{19}{5}\right|+\left|y+\frac{2018}{2019}\right|+\left|z-3\right|=0\)
Vì \(\hept{\begin{cases}\left|x+\frac{19}{5}\right|\ge0\\\left|y+\frac{2018}{2019}\right|\ge0\\\left|z-3\right|\ge0\end{cases}}\)
Mà \(\left|x+\frac{19}{5}\right|+\left|y+\frac{2018}{2019}\right|+\left|z-3\right|=0\)
\(\Rightarrow+,\left|x+\frac{19}{5}\right|=0\)
\(\Leftrightarrow x+\frac{19}{5}=0\)
\(\Leftrightarrow x=\frac{-19}{5}\)
\(\Rightarrow+,\left|y+\frac{2018}{2019}\right|=0\)
\(\Leftrightarrow y+\frac{2018}{2019}=0\)
\(\Leftrightarrow y=\frac{-2018}{2019}\)
\(\Rightarrow+,\left|z-3\right|=0\)
\(\Leftrightarrow z-3=0\)
\(\Leftrightarrow z=3\)
Vậy \(\hept{\begin{cases}x=\frac{-19}{5}\\y=\frac{-2018}{2019}\\z=3\end{cases}}\)
b, Ta có : \(\left|x-\frac{1}{2}\right|+\left|2y+4\right|+\left|z-5\right|\ge0\)
Vì : \(\hept{\begin{cases}\left|x-\frac{1}{2}\right|\ge0\\\left|2y+4\right|\ge0\\\left|z-5\right|\ge0\end{cases}}\)
Mà : \(\left|x-\frac{1}{2}\right|+\left|2y+4\right|+\left|z-5\right|\ge0\)
\(\Rightarrow+,\left|x-\frac{1}{2}\right|\ge0\)
\(\Rightarrow x\inℚ\)
\(\Rightarrow+,\left|2y+4\right|\ge0\)
\(\Rightarrow y\inℚ\)
\(\Rightarrow+,\left|z-5\right|\ge0\)
\(\Rightarrow z\inℚ\)
Vậy chỉ cần \(\hept{\begin{cases}x\inℚ\\y\inℚ\\z\inℚ\end{cases}}\)thì thỏa mãn.
Ta có: \(\left|3x-4\right|\ge0\); \(\left|2y+5\right|\ge0\)
=> \(\left|3x-4\right|+\left|2y+5\right|\ge0\)
Mà theo đề bài: |3x - 4| + |2y - 5| = 0
=> \(\hept{\begin{cases}\left|3x-4\right|=0\\\left|2y+5\right|=0\end{cases}}\)=> \(\hept{\begin{cases}3x-4=0\\2y+5=0\end{cases}}\)=> \(\hept{\begin{cases}3x=4\\2y=-5\end{cases}}\)=> \(\hept{\begin{cases}x=\frac{4}{3}\\y=-\frac{5}{2}\end{cases}}\)
Có:
|3x-4| lớn hơn bằng 0 với mọi x thuộc Q.
|2y+5| lớn hơn bằng 0 với mọi y thuộc Q.
Suy ra tổng sẽ lớn hơn bằng 0.
Từ dữ kiện đề bài:
=>3x-4=0
x=4/3
2y+5=0
y=-2,5.
Xong