K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2017

(x^2  - x + 2 + x - 2)*(x^2 - x + 2 - x +2)

<=>x^2*(x^2 - 2x + 4)

1 tháng 2 2017

bạn ơi mình nhìn nhầm, câu trả lời vừa rồi sai đây để mình làm lại

9 tháng 8 2017

Bài 8: Cho a+b= 1 nha ( mk thiếu đề)

9 tháng 8 2017

Bài 1:

Theo bài ra ta có:

\(\left(x-y\right)^2=x^2-2xy+y^2\)

\(=\left(5-y\right)^2-2\times2+\left(5-x\right)^2\)

\(=5^2-2\times5y+y^2-4+5^2-2\times5x+x^2\)

\(=25-10y+y^2+25-10x+x^2-4\)

\(=\left(25+25\right)-\left(10x+10y\right)+x^2+y^2-4\)

\(=50-10\left(x+y\right)+x^2+2xy+y^2-2xy-4\)

\(=50-10\times5+\left(x+y\right)^2-2\times2-4\)

\(=50-50+5^2-4-4\)

\(=25-8=17\)

Vậy giá trị của \(\left(x-y\right)^2\)là 17

16 tháng 12 2016

a ) \(\left(x+1\right)\left(x-2\right)=x^2-2x+x-2=x^2-x-2\)

b ) \(\left(4x^4y^4-12x^2y^2\right):4x^2y^2=x^2y^2-3\)

c ) \(\frac{3x^2-1}{2x}+\frac{x^2+1}{2x}=\frac{3x^2-1+x^2+1}{2x}=\frac{4x^2}{2x}=2x\)

d ) \(\frac{x^2}{x-1}+\frac{2x}{1-x}+\frac{1}{x-1}=\left(\frac{x^2}{x-1}+\frac{1}{x-1}\right)+\frac{2x}{1-x}\)

                                                     \(=\frac{x^2+1}{x-1}+\frac{2x}{1-x}=\frac{x^2+1}{x-1}+\frac{-2x}{x-1}=\frac{x^2+1-2x}{x-1}=\frac{\left(x-1\right)^2}{x-1}=x-1\)

16 tháng 12 2016

a)   .......=x2-x-2

b)   .........=x2y2-3

c) .......=(3x2-1+x2+1)/2x=4x2/2x=2x

d) x/(x-1)+(-2x)/(x-1)+1/(x-1)=(x2-2x+1)/(x-1)=(x-1)2/(x-1)=x-1

e)...

x-y=4

=> x2-2xy+y2=16

 <=> 106-2xy =16  (vì x2+y2 =106)

=>xy=(106-16)/2=45

ta có   x3 -y=(x-y)(x2+xy+y)

=4(106+45)=604

14 tháng 9 2020

\(A=x^3+y^3+3xy=\left(x+y\right)^3-3xy\left(x+y\right)+3xy=1+0=1\)

\(B=\left(x-y\right)^3+3xy\left(x-y\right)-3xy=1\)

\(c,M=a^2-ab+b^2+3ab\left(a^2+b^2\right)+6a^2b^2=3ab\left(a^2+2ab+b^2\right)+a^2-ab+b^2\)

\(=3ab+a^2-ab+b^2=\left(a+b\right)^2=1\)

\(x+y=2;x^2+y^2=10\text{ do đó:}xy=-3\text{ nên }\left(x-y\right)^2=16\text{ do đó: }x-y=4\text{ hoặc }x-y=-4\)

\(\text{giải ra được:}x=3;y=-1\text{ hoặc ngược lại nên }x^3+y^3=-26\text{ hoặc }26\)

14 tháng 9 2020

A = x3 + y3 + 3xy

= x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2 + 3xy

= ( x3 + 3x2 + 3xy2 + y3 ) - ( 3x2y + 3xy - 3xy )

= ( x + y )3 - 3xy( x + y - 1 )

= 13 - 3xy( 1 - 1 )

= 13 - 3xy.0

= 1 - 0 = 1

Vậy A = 1

b) B = x3 - y3 - 3xy

= x3 - 3x2y + 3xy2 - y3 + 3x2y - 3xy2 - 3xy

= ( x3 - 3x2y + 3xy2 - y3 ) + ( 3x2y - 3xy2 - 3xy )

= ( x - y )3 + 3xy( x - y - 1 )

= 13 + 3xy( 1 - 1 )

= 1 + 3xy.0

= 1 + 0 = 1

Vậy B = 1

M = a3 + b3 + 3ab( a2 + b2 ) + 6a2b2( a + b )

= ( a + b )( a2 - ab + b2 ) + 3ab[ ( a + b )2 - 2ab ] + 6a2b2( a + b )

= ( a + b )[ ( a + b )2 - 3ab ] + 3ab[ ( a + b )2 - 2ab ] + 6a2b2( a + b )

= 1.( 1 - 3ab ) + 3ab( 1 - 2ab ) + 6a2b2.1

= 1 - 3ab + 3ab - 6a2b2 + 6a2b2

= 1

Vậy M = 1

d) x + y = 2

⇔ ( x + y )2 = 4

⇔ x2 + 2xy + y2 = 4

⇔ 10 + 2xy = 4 ( gt x2 + y2 = 10 )

⇔ 2xy = -6

⇔ xy = -3

x3 + y3 = x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2

            = ( x3 + 3x2y + 3xy2 + y3 ) - ( 3x2y + 3xy2 )

            = ( x + y )3 - 3xy( x + y )

            = 23 - 3.(-3).(2)

            = 8 + 18 = 26

18 tháng 9 2020

A = ( x + 1 )( x2 - 3x - 2 ) + ( x + 1 )( x2 - x + 1 )

= ( x + 1 )[ ( x2 - 3x - 2 ) + ( x2 - x + 1 ) ]

= ( x + 1 )( x2 - 3x - 2 + x2 - x + 1 )

= ( x + 1 )( 2x2 - 4x - 1 )

= x( 2x2 - 4x - 1 ) + 2x2 - 4x - 1

= 2x3 - 4x2 - x + 2x2 - 4x - 1

= 2x3 - 2x2 - 5x - 1 

B = ( x - y )( x2 + xy + y2 ) - ( x + y )( x2 + 2x + y2 )

= x3 - y3 - ( x3 + 2x2 + xy2 + x2y + 2xy + y3 )

= x3 - y3 - x3 - 2x2 - xy2 - x2y - 2xy - y3

= -2y3 - 2x2 - xy2 - x2y - 2xy

18 tháng 9 2020

a) \(A=\left(x+1\right)\left(x^2-3x-2\right)+\left(x+1\right)\left(x^2-x+1\right)\)

\(=x.x^2-x.3x-x.2+1.x^2-1.3x-1.2+x.x^2-x.x+x.1+1.x^2-1.x+1.1\)

\(=x^3-3x^2-2x+x^2-3x-2+x^3-x^2+x+x^2-x+1\)

\(=\left(x^3+x^3\right)+\left(-3x^2+x^2-x^2+x^2\right)+\left(-2x-3x+x-x\right)+\left(-2+1\right)\)

\(=2x^3-2x^2-5x-1\)

b) \(B=\left(x-y\right)\left(x^2+xy+y^2\right)-\left(x+y\right)\left(x^2+2x+y^2\right)\)

\(=x.x^2+x.xy+x.y^2-y.x^2-y.xy-y.y^2-x.x^2-x.2x-x.y^2+y.x^2+y.2x+y.y^2\)

\(=x^3+x^2y+xy^2-x^2y-xy^2-y^3-x^3-2x^2-xy^2+xy^2+2xy+y^3\)

\(=\left(x^3-x^3\right)+\left(x^2y-x^2y\right)+\left(xy^2-xy^2-xy^2+xy^2\right)-2x^2+2xy+\left(-y^3+y^3\right)\)

\(=-2x^2+2xy\)

3 tháng 12 2019

\(\left(x-1\right)^2-\left(x-2\right)^2-\left(x-3\right)^2+\left(x-4\right)^2\)

\(=\left(x-1-x+2\right)\left(x-1+x-1\right)-\left(x-3+x-4\right)\left(x-3-x+4\right)\)

\(=2x-2-2x+7\)

\(=5\)

6 tháng 12 2019

tại sao lại ra dòng thứ 2 vậy bn

5 tháng 9 2020

Mấy bài dài dài kia tí mình làm cho :) 

( x - 1 )3 - x( x - 2 )2 + 1 

= x3 - 3x2 + 3x - 1 - x( x2 - 4x + 4 ) + 1

= x3 - 3x2 + 3x - x3 + 4x2 - 4x

= x2 - x = x( x - 1 )

2x( 3x + 2 ) - 3x( 2x + 3 )

= 6x2 + 4x - 6x2 - 9x

= -5x

( x + 2 )3 + ( x - 3 )2 - x2( x + 5 )

= x3 + 6x2 + 12x + 8 + x2 - 6x + 9 - x3 - 5x2

= 2x2 + 6x + 17

( 2x + 3 )( x - 5 ) + 2x( 3 - x ) + x - 10

= 2x2 - 7x - 15 + 6x - 2x2 + x - 10

= -25

( x + 5 )( x2 - 5x + 25 ) - x( x - 4 )2 + 16x

= x3 + 53 - x( x2 - 8x + 16 ) + 16x

= x3 + 125 - x3 + 8x2 - 16x + 16

= 8x2 + 125

( -x - 2 )3 + ( 2x - 4 )( x2 + 2x + 4 ) - x2( x - 6 )

= -x3 - 6x2 - 12x - 8 + 2x3 - 16 - x3 + 6x2

= -12x - 24 = -12( x + 2 )

5 tháng 9 2020

Tương tự ... 

a, \(\left(x-1\right)^3-x\left(x-2\right)^2+1=x^3-3x^2+3x-1-x^3+4x^2-4x+1=x^2-x\)

b, \(2x\left(3x+2\right)-3x\left(2x+3\right)=6x^2+4x-6x^2-9x=-5x\)

c, \(\left(x+2\right)^3+\left(x-3\right)^2-x^2\left(x+5\right)=x^3+6x^2+12x+8+x^2+6x+9-x^3-5x^2=2x^2+18x+17\)

27 tháng 5 2017

minh chua co luot k nao k minh di

28 tháng 5 2017

Bài 1:

a)\(A=x\left(x^2-y\right)-x^2\left(x+y\right)+y\left(x^2-x\right)\)\(=x^3-xy-x^3-x^2y+yx^2-yx=-2xy\)

Thay x=1/2 và y=-100 vào biểu thức A ta được \(A=-2.\frac{1}{2}.\left(-100\right)=100\)

b)\(B=\left(x^2-5\right)\left(x+3\right)+\left(x+4\right)\left(x-x^2\right)=x^3+3x^2-5x-15-x^3-3x^2+4x\)=-x-15

Thay x=-1 vào biểu thức B ta được B=-(-1)-15=1-15=-14

26 tháng 10 2016

Đại số lớp 8Đại số lớp 8

(x2– y2 + 6x + 9) : (x + y + 3) = (x2 + 6x+ 9) – y2 : (x + y + 3)

=(x + 3)2 – y2 : (x + y + 3) = (x + 3 – y) (x + 3 + y) : (x + y + 3) = (x – y + 3)

19 tháng 8 2017

còn câu c thì sao bn