K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2018

Thực ra 2 câu đầu rất dễ nha bạn ^^!

1) x+ 2x3 + x2 + 2x + 1 =0 <=> x3(x+2)+x(x+2)+1 = 0

<=> (x3+x)(x+2) + 1=0

1>0

=> (x3+x)(x+2) + 1=0 <=> (x3+x)(x+2) = 0

<=>\(\orbr{\begin{cases}^{x^3+x=0}\\x+2=0\end{cases}}\)<=>\(\orbr{\begin{cases}^{x\left(x^2+1\right)=0}\\x=-2\end{cases}}\) <=>\(\orbr{\begin{cases}^{x=0}\\x=-2\end{cases}}\)

b)

x3+1=\(2\sqrt[3]{2x-1}\)

<=> x^3 - 1 = 2(\(\sqrt[3]{2x-1}\) -1)

<=> (x-1)(x2+x+1) = \(\frac{4\left(x-1\right)}{\sqrt[3]{\left(2x-1\right)^2}+\sqrt[3]{2x-1}+1}\)

<=> (x-1)[(x2+x+1) - \(\frac{1}{\sqrt[3]{\left(2x-1\right)^2}+\sqrt[3]{2x-1}+1}\) ] =0

<=> x=1

17 tháng 1 2018

xin lỗi bạn mình ghi nhầm câu 1, mai mình sẽ sửa lại

5 tháng 2 2018

\(\left(2x+4\right)\left(x-3\right)-\left(x+2\right)\left(x-4\right)=x\left(x+5\right)\)

\(2\left(x+2\right)\left(x-3\right)-\left(x+2\right)\left(x-4\right)=x\left(x+5\right)\)

\(\left(x+2\right)\left(2x-6-x+4\right)=x\left(x+5\right)\)

\(\left(x+2\right)\left(x-2\right)-x^2-5x=0\)

\(x^2-2x+2x-4-x^2-5x=0\)

\(-5x-4=0\)

\(-5x=4\)

\(\Rightarrow\)\(x=\frac{-4}{5}\)

\(\left(x-2\right)^2=\left(2x-4\right)\left(x+5\right)\)

\(\left(x-2\right)^2-2\left(x-2\right)\left(x+5\right)=0\)

\(\left(x-2\right)\left(x-2-2x-10\right)=0\)

\(\left(x-2\right)\left(-x-12\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x-2=0\\-x-12=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-12\end{cases}}}\)

Bạn tự kết luận 2 câu nhé

5 tháng 2 2018

làm hệ PT nghĩ ngay đến xét hàm

20 tháng 11 2015

Nhớ ghi dấu ngoặc tránh giải sai. 

\(a.\)  \(\frac{x+4}{2x+6}+\frac{3}{x^2-9}\)

Ta có: 

\(2x+6=2\left(x+3\right)\)

\(x^2-9=\left(x-3\right)\left(x+3\right)\)

nên \(MTC:\)  \(2\left(x-3\right)\left(x+3\right)\)

Do đó:  \(\frac{x+4}{2x+6}+\frac{3}{x^2-9}=\frac{x+4}{2\left(x+3\right)}+\frac{3}{\left(x-3\right)\left(x+3\right)}=\frac{\left(x+4\right)\left(x-3\right)}{2\left(x-3\right)\left(x+3\right)}+\frac{2.3}{2\left(x-3\right)\left(x+3\right)}=\frac{x^2+x-12+6}{2\left(x-3\right)\left(x+3\right)}\)

\(=\frac{x^2+x-6}{2\left(x-3\right)\left(x+3\right)}=\frac{x^2-2x+3x-6}{2\left(x-3\right)\left(x+3\right)}=\frac{x\left(x-2\right)+3\left(x-2\right)}{2\left(x-3\right)\left(x+3\right)}=\frac{\left(x-2\right)\left(x+3\right)}{2\left(x-3\right)\left(x+3\right)}=\frac{x-2}{2\left(x-3\right)}\)

 

20 tháng 11 2015

tick mình đi mình giải cho nha

7 tháng 2 2018

\(\frac{1}{x^2-2x+2}+\frac{2}{x^2-2x+3}=\frac{6}{x^2-2x+4}\)

Đặt a = x2 - 2x + 3. Khi đó phương trình trở thành:

\(\frac{1}{a+1}+\frac{2}{a}=\frac{6}{a-1}\) \(ĐK:\)\(\hept{\begin{cases}a\ne0\\a\ne1\\a\ne-1\end{cases}}\)

\(\Leftrightarrow\)\(\frac{a\left(a-1\right)}{a\left(a-1\right)\left(a+1\right)}+\frac{2\left(a-1\right)\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)}=\frac{6a\left(a+1\right)}{a\left(a-1\right)\left(a+1\right)}\)

\(\Rightarrow\)\(a^2-a+2a^2-2-6a^2-6a=0\)

\(\Leftrightarrow\)\(-3a^2-7a-2=0\)

\(\Leftrightarrow\)\(\left(a-6\right)\left(a-1\right)=0\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}a-6=0\\a-1=0\end{cases}}\)

\(\Rightarrow\)\(\orbr{\begin{cases}x^2-2x-3=0\\x^2-2x+2=0\end{cases}}\)

\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-3\\x=1\end{cases}\left(x^2-2x+2\ne0\right)}\)

Vậy \(S=\left\{-3;1\right\}\)

\(x^2+2x+5\)

\(=x^2+2.x.1+1+4\)

\(=\left(x+1\right)^2+4\ge4\)

Min \(=4\Leftrightarrow x+1=0\Rightarrow x=-1\)