\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-6-\sqrt{20}}}}\)

Giải hộ mình với 

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2017

\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(\sqrt{20}-3\right)^2}}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{3-\left(\sqrt{20}-3\right)}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20}+3}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{6-\sqrt{20}}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(A=\sqrt{\sqrt{5}-\sqrt{5}+1}=\sqrt{1}=1\)

23 tháng 7 2017

\(B=\sqrt{6+2\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}}=\sqrt{6+2\sqrt{5-\left(2\sqrt{3}+1\right)}}\)

\(B=\sqrt{6+2\sqrt{5-2\sqrt{3}-1}}=\sqrt{6+2\sqrt{4-2\sqrt{3}}}=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(B=\sqrt{6+2\left(\sqrt{3}-1\right)}=\sqrt{6+2\sqrt{3}-2}=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}\)

\(B=\sqrt{3}+1\)

21 tháng 7 2017

\(\frac{A}{\sqrt{2}}=\frac{2+\sqrt{3}}{2+\sqrt{4+2\sqrt{3}}}+\frac{2-\sqrt{3}}{2-\sqrt{4-2\sqrt{3}}}\)

 =\(\frac{2+\sqrt{3}}{3+\sqrt{3}}+\frac{2-\sqrt{3}}{3-\sqrt{3}}\) =\(\frac{\left(2+\sqrt{3}\right)\left(3-\sqrt{3}\right)+\left(2-\sqrt{3}\right)\left(3+\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}\) =\(\frac{6}{6}=1\)

\(\Rightarrow A=\sqrt{2}\)

29 tháng 7 2020

\(A=\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=1+\sqrt{2}\)

\(A=\sqrt{3+\sqrt{5}}+\sqrt{3-\sqrt{5}}\)

\(\sqrt{2}A=\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\)

\(\sqrt{2}A=\sqrt{5}+\sqrt{5}+1-1\)

\(\sqrt{2}A=2\sqrt{5}\)

\(A=\sqrt{10}\)

P/s tham khảo nha

\(\sqrt{\left(3-\sqrt{5}\right)^2}+\sqrt{6-2\sqrt{5}}\)

\(=3-\sqrt{5}+\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(=3-\sqrt{5}+\sqrt{5}-1=2\)

\(\sqrt{9+4\sqrt{5}}=\sqrt{\left(\sqrt{5}+2\right)^2}-\sqrt{5}\)

\(=\sqrt{5}+2-\sqrt{5}=2\)

Chúc học tốt!!!!!!!!!!!!!

14 tháng 6 2018

1 bài thôi nhé, tui còn phải xem World Cup :vv

\(\sqrt{x^4-4x+4}=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-6\sqrt{20}}}}\)

\(\Leftrightarrow x^4-4x+4=\sqrt{5}-\sqrt{3-\sqrt{20-2\cdot\sqrt{20}\cdot3+9}}\)

\(\Leftrightarrow x^4-4x+4=\sqrt{5}-\sqrt{3-\left(\sqrt{20}-3\right)}\)

\(\Leftrightarrow x^4-4x+4=\sqrt{5}-\sqrt{6-2\sqrt{5}}\)

\(\Leftrightarrow x^4-4x+4=\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}\)

\(\Leftrightarrow x^4-4x+4=\sqrt{5}-\sqrt{5}+1\)

\(\Leftrightarrow x^4-4x+3=0\)

\(\Leftrightarrow x^4+2x^3+3x^2-2x^3-4x^2-6x+x^2+2x+3=0\)

\(\Leftrightarrow x^2\left(x^2+2x+3\right)-2x\left(x^2+2x+3\right)+\left(x^2+2x+3\right)=0\)

\(\Leftrightarrow\left(x^2+2x+3\right)\left(x^2-2x+1\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x^2+2x+3\right)=0\)

Vì: \(x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2\ge2>0\)

=> \(\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\) (thỏa mãn)

Vậy pt có nghiệm x = 1

p/s: đkxđ là x thuộc R nên tui k ghi vào :v

15 tháng 6 2018

cảm ơn nhiều

6 tháng 8 2020

con cacacacacacacacacacacacacacacacacacca

@@22@22@22@@222@@2@@2@@@2@2

6 tháng 8 2020

bạn kiểm tra lại đề bài cấu (c)

10 tháng 8 2017

1)

dat \(a=\sqrt[3]{x+1};b=\sqrt[3]{7-x}\)

ta co b=2-a

a^3+b^3=x+1+7-x=8 

a^3+b^3=a^3+b^3+3ab(a+b)

ab(a+b)=0

suy ra a=0 hoac b=0 hoac a=-b

<=> x=-1; x=7 

a=-b

a^3=-b^3

x+1=x+7 (vo li nen vo nghiem)

cau B tuong tu

2)

tat ca cac bai tap deu chung 1 dang do la

\(\sqrt[3]{a+m}+\sqrt[3]{b-m}\)voi m la tham so

dang nay co 2 cach 

C1 lap phuong VD: \(B^3=10+3\sqrt[3]{< 5+2\sqrt{13}>< 5-2\sqrt{13}>}\left(B\right)\)

B^3=10-9B

B=1 cach nay nhanh nhung kho nhin

C2 dat an

\(a=\sqrt[3]{5+2\sqrt{13}};b=\sqrt[3]{5-2\sqrt{13}}\)

de thay B=a+b

a^3+b^3=10

ab=-3

B^3=10-9B

suy ra B=1

tuong tu giai cac cau con lai.

10 tháng 8 2017

Bài 1:

a. Đặt \(a=\sqrt[3]{x+1}\)\(b=\sqrt[3]{7-x}\). Ta có:

\(\hept{\begin{cases}a+b=2\\a^3+b^3=8\end{cases}\Leftrightarrow a^3+\left(2-a\right)^3=8\Leftrightarrow...\Leftrightarrow\orbr{\begin{cases}a=0\\a=2\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}a=0\\b=2\end{cases}}\)hoặc \(\hept{\begin{cases}a=2\\b=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\sqrt[3]{x+1}=0\\\sqrt[3]{7-x}=2\end{cases}}\)hoặc \(\hept{\begin{cases}\sqrt[3]{x+1}=2\\\sqrt[3]{7-x}=0\end{cases}}\)

\(\Leftrightarrow x=-1\)hoặc \(x=7\)