Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\sqrt{0,1^2}=0,1\)
\(b,\sqrt{\left(-0,4\right)^2}=|-0,4|=0,4\)
\(c,-\sqrt{\left(-1,7\right)^2}=-|-1,7|=-1,7\)
\(d,-0,5\sqrt{\left(-0,5\right)^4}=\frac{-1}{2}\sqrt{[\left(\frac{-1}{2}\right)^2]^2}=-\frac{1}{2}.\left(\frac{1}{2}\right)^2=\frac{-1}{2}.\frac{1}{4}=\frac{-1}{8}\)
\(e,\sqrt{\left(1-\sqrt{2}\right)^2}=|1-\sqrt{2}|=\sqrt{2}-1\)
\(g,\sqrt{\left(\sqrt{3}-1\right)^2}=|\sqrt{3}-1|=\sqrt{3}-1\)
a: \(=\dfrac{-4}{5}\cdot\dfrac{5}{4}=-1\)
b: =8
c: \(=2-\sqrt{3}\)
d: \(=3-2\sqrt{2}\)
e: \(=\dfrac{1}{\sqrt{2}}-\dfrac{1}{2}\)
a: \(=\dfrac{-4}{5}\cdot\left|-\dfrac{5}{4}\right|=\dfrac{-4}{5}\cdot\dfrac{5}{4}=-1\)
b: \(=\left|\left(-2\right)^3\right|=8\)
c: \(=\left|\sqrt{3}-2\right|=2-\sqrt{3}\)
d: \(=\left|2\sqrt{2}-3\right|=3-2\sqrt{2}\)
e: \(=\left|\dfrac{\sqrt{2}}{2}-\dfrac{1}{2}\right|=\dfrac{\sqrt{2}-1}{2}\)
f: \(=\left|\dfrac{1}{10}-\dfrac{\sqrt{10}}{10}\right|=\dfrac{\sqrt{10}-1}{10}\)
a) Phương trình 1,5x2 – 1,6x + 0,1 = 0
Có a + b + c = 1,5 – 1,6 + 0,1 = 0 nên x1 = 1; x2 = \(\dfrac{0,1}{15}\)
c) \(\left(2-\sqrt{3}\right)x^2+2\sqrt{3x}-\left(2+\sqrt{3}\right)=0\)
Có \(a+b+c=2-\sqrt{3}+2\sqrt{3}-\left(2+\sqrt{3}\right)=0\)
Nên x1 = 1, x2 = \(\dfrac{-\left(2+\sqrt{3}\right)}{2-\sqrt{3}}\) = -(2 + \(\sqrt{3}\))2 = -7 - 4\(\sqrt{3}\)
d) (m – 1)x2 – (2m + 3)x + m + 4 = 0
Có a + b + c = m – 1 – (2m + 3) + m + 4 = 0
Nên x1 = 1, x2 = \(\dfrac{m+4}{m-1}\)
a) Phương trình 1,5x2 – 1,6x + 0,1 = 0
Có a + b + c = 1,5 – 1,6 + 0,1 = 0 nên x1 = 1; x2 =
b) Phương trình √3x2 – (1 - √3)x – 1 = 0
Có a – b + c = √3 + (1 - √3) + (-1) = 0 nên x1 = -1, x2 = =
c) (2 - √3)x2 + 2√3x – (2 + √3) = 0
Có a + b + c = 2 - √3 + 2√3 – (2 + √3) = 0
Nên x1 = 1, x2 = = -(2 + √3)2 = -7 - 4√3
d) (m – 1)x2 – (2m + 3)x + m + 4 = 0
Có a + b + c = m – 1 – (2m + 3) + m + 4 = 0
Nên x1 = 1, x2 =
Lời giải :
a) \(\sqrt{\left(0,1-\sqrt{0,1}\right)^2}\)
\(=0,1-\sqrt{0,1}\)
b) \(\sqrt{4-2\sqrt{3}}=\sqrt{3-2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}-1\right)^2}=\sqrt{3}-1\)
c) \(\sqrt{3+2\sqrt{2}}=\sqrt{2+2\sqrt{2}+1}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)
d) \(\sqrt{9-4\sqrt{5}}=\sqrt{5-4\sqrt{5}+4}=\sqrt{\left(\sqrt{5}-2\right)^2}=\sqrt{5}-2\)
e) \(\sqrt{16-6\sqrt{7}}=\sqrt{9-2\cdot3\cdot\sqrt{7}+7}=\sqrt{\left(3-\sqrt{7}\right)^2}=3-\sqrt{7}\)
\(\sqrt{\left(0,1\right)^2}=0,1=\dfrac{1}{10}\)
\(\sqrt{\left(0.1\right)^2}=0.1\)