Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chị tham khảo ở đây ạ:
Câu hỏi của Vũ Thảo Vy - Toán lớp 9 - Học toán với OnlineMath
a) \(x^2=5\Leftrightarrow\left[\begin{array}{nghiempt}x=\sqrt{5}\approx2,236\\x=-\sqrt{5}\approx-2,236\end{array}\right.\)
b)Sai đề
c) \(x^2=2,5\Leftrightarrow\left[\begin{array}{nghiempt}x=\sqrt{2,5}\approx1,581\\x=-\sqrt{5}\approx-1,581\end{array}\right.\)
d) \(x^2=\sqrt{5}\Leftrightarrow\left[\begin{array}{nghiempt}x=\sqrt{\sqrt{5}}\approx1,495\\x=-\sqrt{\sqrt{5}}\approx-1,495\end{array}\right.\)
Ta có:\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n^2+n}=\frac{\left(n+1\right)\sqrt{n}-n\sqrt{n+1}}{n\left(n+1\right)}\)
\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{n}\cdot\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)(Nhân liên hợp)
Áp dụng vào bài toán,ta có:
\(S=\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+.....+\frac{1}{25\sqrt{24}+24\sqrt{25}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{4}}+...+\frac{1}{\sqrt{99}}-\frac{1}{\sqrt{100}}\)
\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{100}}\)
\(=\frac{9}{10}\)
1/((k+1)√k+k√(k+1))
=((k+1)√k-k√(k+1))/((k+1)^2.k-k^2(k+1)
=((k+1)√k-k√(k+1))/k(k+1)(k+1-k)
=1/√k-1/√(k+1)
1/(2+√2)=1-1/√2
1/(3√2+2√3)=1/√2-1√3
......
1/(100√99+99√100)=1/√99-1/√100
=>1/(2+√2)+1/(3√2+2√3)+......+1/(100√99+99√100)
=1-1/√2+1/√2-1√3+...+1/√99-1/√100
=1-1/√100=1-1/10=9/10
a) \(\sqrt{49}+\sqrt{25}-4\cdot0,25\)
\(=7+5-1=11\)
b) \(\sqrt{\frac{1}{9}}\cdot\sqrt{0,81}\cdot\sqrt{0,9}\)
\(=\frac{1}{3}\cdot\frac{9}{10}\cdot\frac{3\sqrt{10}}{10}\)
\(=\frac{9\sqrt{10}}{100}\)
c) \(\sqrt{6,4\cdot2400\cdot0,6}\)
\(=\sqrt{64\cdot36\cdot4}\)
\(=8\cdot6\cdot2=96\)
d) \(\sqrt{26^2-24^2}=\sqrt{\left(26-24\right)\left(26+24\right)}\)
\(=\sqrt{2\cdot50}=\sqrt{100}=10\)
Câu a, b, bạn có thể làm được suy nghĩ đi nha
c)
Ta có pt tổng quát :
\(\dfrac{1}{a\sqrt{a+1}+\left(a+1\right)\sqrt{a}}=\dfrac{1}{\sqrt{a\left(a+1\right)}\left(\sqrt{a}+\sqrt{\left(a+1\right)}\right)}=\dfrac{\sqrt{a+1}-\sqrt{a}}{\sqrt{a}\sqrt{a+1}}=\dfrac{1}{\sqrt{a}}-\dfrac{1}{\sqrt{a+1}}\)\(\Rightarrow C=\dfrac{1}{\sqrt{1}}-\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{2}}-\dfrac{1}{\sqrt{3}}+.....+\dfrac{1}{\sqrt{24}}-\dfrac{1}{\sqrt{25}}=1-\dfrac{1}{5}=\dfrac{4}{5}\)..........Kaito Kid.......
\(\sqrt{25^2-24^2}=\sqrt{\left(25-24\right)\left(25+24\right)}=\sqrt{1\cdot49}=\sqrt{49}=7\)
-7 nữa