K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2017

\(Q=\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{64.67}\)

\(Q=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+....+\frac{1}{64}-\frac{1}{67}\)

\(Q=\frac{1}{4}-\frac{1}{67}=\frac{63}{268}\)

\(M=\frac{22}{1.3}+\frac{22}{3.5}+...+\frac{22}{101.103}\)

\(M=\frac{22}{2}\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{101}-\frac{1}{103}\right)\)

\(M=11\cdot\left(1-\frac{1}{103}\right)\)

\(M=11\cdot\frac{102}{103}=\frac{1122}{103}\)

22 tháng 7 2017

\(Q=\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{64.67}\)

\(\Leftrightarrow Q=3\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{64}-\frac{1}{67}\right)\)

\(\Leftrightarrow Q=3\left(\frac{1}{4}-\frac{1}{67}\right)\)

\(\Leftrightarrow Q=3.\frac{63}{268}\)

\(\Leftrightarrow Q=\frac{189}{268}\)

Câu b) bạn làm tương tự nhé :)

21 tháng 7 2017

Q=3/4.7+3/7.10+...+3/64+67

Q=1/4-1/7+1/7-1/10+.....+1/64-1/67

Q=1/4-1/67

Q=63/268

M=22/1.3+22/3.5+..+22/101.103

M=2.(2/1.3+2/3.5+...+2/101+103)

M=2.(1-1/3+1/3-1/5+1/5-......+1/101-1/103)

M=2.(1-1/103)

M=2.102/103

M=204/103

K MÌNH NHA

21 tháng 6 2017

M=3.(25-2/13+1/17-1/19)/11.(25-2/13+1/17-1/19)=3/11

13 tháng 2 2015

a) 1/1 - 1/3 +1/3 - 1/5 +........+1/49 - 1/51

=1/1 - 1/51 (các số liền kề nhau cộng lại bằng 0)

=50/51

còn câu b bạn tự giải

nhớ thank mik nha!!!!!

14 tháng 2 2015

b,khoảng cách của nó là 3 mà tử của nó bằng 3 chứng  tỏ nó là dạng đủ 

1/1-1/4+1/4-1/7+...+1/97-1/100

1-1/100=99/100

3 tháng 10 2020

em đang học lớp 5 ạ

3 tháng 10 2020

e lớp 5 thì e đừng có lm!

19 tháng 3 2017

\(A=\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+...+\dfrac{2}{2015.2017}\)

\(A=1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{2015}-\dfrac{1}{2017}\)

\(A=1-\dfrac{1}{2017}=\dfrac{2016}{2017}\)

\(B=\dfrac{3}{1.4}+\dfrac{3}{5.7}+\dfrac{3}{7.10}+...+\dfrac{3}{100.103}\)

\(B=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{100}-\dfrac{1}{103}\)

\(B=1-\dfrac{1}{103}=\dfrac{102}{103}\)

\(C=\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{62.65}\)

\(3C=3\left(\dfrac{1}{2.5}+\dfrac{1}{5.8}+\dfrac{1}{8.11}+...+\dfrac{1}{62.65}\right)\)

\(3C=\dfrac{3}{2.5}+\dfrac{3}{5.8}+\dfrac{3}{8.11}+...+\dfrac{3}{62.65}\)

\(3C=\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{62}-\dfrac{1}{65}\)

\(3C=\dfrac{1}{2}-\dfrac{1}{65}\)

\(3C=\dfrac{63}{130}\)

\(C=\dfrac{63}{130}:3=\dfrac{21}{130}\)

19 tháng 3 2017

thanhk

haha

27 tháng 7 2017

\(A=\frac{3}{1.4}+\frac{3}{4.7}+..........+\frac{3}{91.94}\)

\(\Leftrightarrow A=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{91}-\frac{1}{94}\)

\(\Leftrightarrow A=1-\frac{1}{94}=\frac{93}{94}\)

\(B=\frac{1}{1.3}+\frac{1}{3.5}+......+\frac{1}{97.99}\)

\(\Leftrightarrow2B=\frac{2}{1.3}+\frac{2}{3.5}+.......+\frac{3}{97.99}\)

\(\Leftrightarrow2B=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{97}-\frac{1}{99}\)

\(\Leftrightarrow2B=1-\frac{1}{99}=\frac{98}{99}\)

\(\Leftrightarrow B=\frac{98}{99}:2=\frac{49}{99}\)

27 tháng 7 2017

Ta có : \(A=\frac{3}{1.4}+\frac{3}{4.7}+.....+\frac{3}{91.94}\)

\(=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+.....+\frac{1}{91}-\frac{1}{94}\)

\(=1-\frac{1}{94}\)

\(=\frac{93}{94}\)

5 tháng 8 2017

\(a,=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\)

\(=\frac{1}{2}-0-0-0-...-0-\frac{1}{8}\)

\(=\frac{1}{2}-\frac{1}{8}\)

\(=\frac{4}{8}-\frac{1}{8}\)

\(=\frac{3}{8}\)

\(b,=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-...-\frac{1}{49}+\frac{1}{49}-\frac{1}{16}\)

\(=1-0-0-0-...-0-\frac{1}{16}\)

\(=1-\frac{1}{16}\)

\(=\frac{15}{16}\)

\(c,\frac{3}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...-\frac{1}{51}\right)\)

\(=\frac{3}{2}.\left(1-0-0-0-...-\frac{1}{51}\right)\)

\(=\frac{3}{2}.\frac{50}{51}\)

\(=\frac{25}{17}\)

\(d,\)giống câu a tự làm nha mỏi tay quá.

5 tháng 8 2017

\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}.\)

=> \(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}\)

=> \(A=\frac{1}{2}-\frac{1}{8}=\frac{3}{8}\)

\(B=\frac{3}{4.7}+\frac{3}{7.10}+\frac{3}{10.13}+...+\frac{3}{49.52}=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{49}-\frac{1}{52}\)

=> \(B=\frac{1}{4}-\frac{1}{52}=\frac{24}{104}=\frac{1}{26}\)

18 tháng 8 2023

\(A=\dfrac{3}{1\cdot4}+\dfrac{3}{4\cdot7}+\dfrac{3}{7\cdot10}+...+\dfrac{3}{61\cdot64}+\dfrac{3}{64\cdot67}\)

\(A=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{61}-\dfrac{1}{64}+\dfrac{1}{64}-\dfrac{1}{67}\)

\(A=1-\dfrac{1}{67}\) < 1

=> A<1

18 tháng 8 2023

Ta có:

\(A=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{61.64}+\dfrac{3}{64.67}\)

\(=3.\dfrac{1}{3}.\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{61}-\dfrac{1}{64}+\dfrac{1}{64}-\dfrac{1}{67}\right)\)

\(=3.\left(1-\dfrac{1}{67}\right)\)

\(=3.\dfrac{66}{67}\)

\(=\dfrac{198}{67}\)

Vì \(\dfrac{198}{67}\) có tử lớn hơn mẫu nên \(\dfrac{198}{67}>1\)

Vậy \(A>1\)