Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3A=1+\frac{1}{3}+...+\frac{1}{3^{2017}}\)
\(3A-A=\left(1+\frac{1}{3}+...+\frac{1}{3^{2017}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2018}}\right)\)
\(2A=1-\frac{1}{3^{2018}}\)
\(A=\frac{1-\frac{1}{3^{2018}}}{2}\)
đặt \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2018}}\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2017}}\)
\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2017}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2018}}\right)\)
\(2A=1-\frac{1}{3^{2018}}\)
\(A=\frac{1-\frac{1}{3^{2018}}}{2}\)
đặt \(B=1+5+5^2+...+5^{2018}\)
\(5B=5+5^2+5^3+...+5^{2019}\)
\(5B-B=\left(5+5^2+5^3+...+5^{2019}\right)-\left(1+5+5^2+...+5^{2018}\right)\)
\(4B=5^{2019}-1\)
\(B=\frac{5^{2019}-1}{4}\)
a) \(\left(\frac{1}{2}-x\right)^3=\frac{1}{8}\Leftrightarrow\left(\frac{1}{2}-x\right)^3=\left(\frac{1}{2}\right) ^3\)
\(\Leftrightarrow\frac{1}{2}-x=\frac{1}{2}\Leftrightarrow x=\frac{1}{2}-\frac{1}{2}=0\)
b) \(5^{x+1}-5^x=500\Leftrightarrow5^x.5^1-5^x=500\)
\(\Leftrightarrow5^x\left(5-1\right)=500\Leftrightarrow5^x.4=500\)
\(\Leftrightarrow5^x=\frac{500}{4}=125=5^3\).Từ đó ta có: \(5^x=5^3\Leftrightarrow x=3\)
\(\left(-32\right)^9=-\left(2^5\right)^9=-\left(2^{45}\right)\)
\(\left(-16\right)^{13}=-\left(2^4\right)^{13}=-\left(2^{52}\right)\)
vì -2^45>-2^52hay -16^13>-32^9
\(5S=5+1+\frac{1}{5^2}+...+\)\(\frac{1}{5^{2019}}\)
\(5S-S=4S=5-\frac{1}{5^{2019}}\)
\(\Rightarrow S=\frac{\frac{5^{2020}}{5^{2019}}}{4}\)
\(S=1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2020}}\)
\(5S=5\left(1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2020}}\right)\)
\(5S=5+1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2019}}\)
\(5S-S=4S\)
\(=5+1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2019}}-\left(1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2020}}\right)\)
\(=5+1+\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{2019}}-1-\frac{1}{5}-\frac{1}{5^2}-\frac{1}{5^3}-...-\frac{1}{5^{2020}}\)
\(=5-\frac{1}{5^{2020}}\)
\(4S=5-\frac{1}{5^{2020}}\Rightarrow S=\frac{5-\frac{1}{5^{2020}}}{4}\)
S = 1 + 3 + 32 + ... + 3100
3S = 3 + 32 + ... + 3101
3S - S = 3101 - 1
2S = 3101 - 1
S = \(\frac{3^{101}-1}{2}\)
B = 1 + 5 + 52 + ... + 549
5B = 5 + 52 + ... + 550
5B - B = 550 - 1
4B = 550 - 1
B = \(\frac{5^{50}-1}{4}\)
đăng từng câu nhé bạn
chứ kiểu vậy thì ko có ai giải cho bạn đâu
Q = \(1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{500}}\)
=> 5Q = \(5+1+\frac{1}{5}+...+\frac{1}{5^{499}}\)
=> 5Q - Q = \(5-\frac{1}{5^{500}}\)
=> Q = \(\frac{5-\frac{1}{5^{500}}}{4}\)