Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2-y^2\right)^2=\left(x-y\right)^2\left(x+y\right)^2\) \(\Rightarrow\left\{{}\begin{matrix}x;y>0\\x+y< 1\end{matrix}\right.\)=> dccm sai = > người ra đề sai họăc người chép đề sai ;
\(VT=\frac{\left(yz\right)^2}{x^2yz\left(y+z\right)}+\frac{\left(zx\right)^2}{xy^2z\left(z+x\right)}+\frac{\left(xy\right)^2}{xyz^2\left(x+y\right)}\)
\(VT=\frac{2\left(yz\right)^2}{xy+xz}+\frac{2\left(zx\right)^2}{xy+yz}+\frac{2\left(xy\right)^2}{xz+yz}\)
\(VT\ge\frac{2\left(xy+yz+zx\right)^2}{2\left(xy+yz+zx\right)}=xy+yz+zx\)
Dấu "=" xảy ra khi \(x=y=z=\frac{1}{\sqrt[3]{2}}\)
Câu 1:
Phương trình hoành độ giao điểm của (P) và (d):
\(x^2-4x=-x-2\)
⇔ \(x^2-3x+2=0\)
⇔ \(\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
Với x= 2 ⇒ y=-2 -2 = -4
Với x= 1 ⇒ y = -1 -2 = -3
Vậy chọn B: M( 1; -3) và N(2;-4)
Câu 2:
Vì (d) tiếp xúc với (P)
nên Δ = 0 ⇒ phương trình có một nghiệm kép
Vậy chọn D: y= -x +1
Câu 3:
(P) : y =\(x^2+4x+4\)
Để (P) có điểm chung với trục hoành ⇔ y =0
Vậy chọn B : 1
Câu 4:
Phương trình hoành độ giao điểm của hai parabol:
\(x^2-4=14-x^2\)
⇔ \(2x^2-18=0\)
⇔\(\left[{}\begin{matrix}x=3\Rightarrow y=14-3^2=5\\x=-3\Rightarrow y=14-\left(-3\right)^2=5\end{matrix}\right.\)
Vậy chọn C : (3;5) và (-3;5)
Câu 5: (P) : y= \(x^2-2x+m-1\)
Để (P) không cắt Ox
⇔ Δ < 0
⇔ \(b^2-4ac< 0\)
⇔ \(\left(-2\right)^2-4\left(m-1\right)< 0\)
⇔ 4 - 4m +4 < 0
⇔ -4m < -8
⇔ m > 2
Vậy chọn B : m> 2
* Tính K;
Ta có: x+y+z=0 => (x+y+z)2=0
<=> x2+y2+z2+2(xy+yz+zx)=0(1)
Vì xy+yz+zx=0(2)
Từ (1)(2) => x2+y2+z2=0
Mà \(x^2;y^2;z^2\ge0\)
=> x=y=z=0
=> K= \(\left(-1\right)^{2014}+0^{2015}+1^{2016}=1+1=2\)
* Tính F
Ta có: F= \(a^2\left(a+1\right)-b^2\left(b-1\right)+ab-3ab\left(a-b-1\right)\)
= \(a^3+a^2-b^3+b^2+ab-0\)( vì a-b=1 nên a-b-1=0)
= \(\left(a^3-b^3\right)+\left(a^2+ab+b^2\right)\)
=\(\left(a-b\right)\left(a^2+ab+b^2\right)+\left(a^2+ab+b^2\right)\)
= \(2\left(a^2+ab+b^2\right)\)
câu F chưa tính dc giá trị mà bạn