Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Thay a,b,c lần lượt vào biểu thức...
Tính được kết quả:
a) A= \(-\frac{7}{10}\)
b) B= \(-\frac{2}{7}\)
c) C= 0
a: \(B=\left(-\dfrac{1}{5}-\dfrac{5}{7}+\dfrac{-3}{35}\right)+\left(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{2}\right)+\dfrac{1}{41}\)
\(=\dfrac{-7-25-3}{35}+\dfrac{3+2+1}{6}+\dfrac{1}{41}=\dfrac{42}{41}-1=\dfrac{1}{41}\)
a) \(\frac{1}{n}\) - \(\frac{1}{n+1}\) = \(\frac{n+1}{n\left(n+1\right)}\) - \(\frac{n}{n\left(n+1\right)}\) = \(\frac{1}{n\left(n+1\right)}\) = \(\frac{1}{n}\) . \(\frac{1}{n+1}\) =>đpcm
b) A= \(\frac{1}{2}\) - \(\frac{1}{3}\) + \(\frac{1}{3}\) - \(\frac{1}{4}\)+...+\(\frac{1}{8}\) - \(\frac{1}{9}\) +\(\frac{1}{9}\)
= \(\frac{1}{2}\) + \(\frac{1}{9}\)= \(\frac{11}{18}\)
Chỉ dữ kiện như vậy thì không đủ để tìm x,y , vì có rất nhiều giá trị thỏa mãn.
d) 7/18 . x - 2/3 = 5/18
7/18 . x = 5/18+2/3
= 17/18 : 7/18
= 17/7
e) 4/9 - 7/8 . x = -2/3
7/8 . x = 4/9 - -2/3
= 10/9 : 7/8
= 80/63
f) 1/6 + -5/7 : x = -7/18
-5/7 : x = -7/18 - 1/6
-5/7 : x = -5/9
= -5/7 : -5/9
= 9/7
Sau đó bạn thử lại kết quả nha!
Ta làm như sau:
\(\frac{6}{18}\)+\(\frac{6}{54}\)+\(\frac{6}{108}\)+...+\(\frac{6}{990}\)
=\(\frac{6}{3.6}\)+\(\frac{6}{6.9}\)+\(\frac{6}{9.12}\)+...\(\frac{6}{30.33}\)
=2 (\(\frac{3}{3.6}\)+\(\frac{3}{6.9}\)+\(\frac{3}{9.12}\)+...+\(\frac{3}{30.33}\)
=2 (\(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{30}-\frac{1}{33}\))
=2 ( \(\frac{1}{3}-\frac{1}{33}\))
=2.\(\frac{10}{33}\)=\(\frac{2.10}{33}\)=\(\frac{20}{33}\)
\(\frac{6}{18}+\frac{6}{54}+\frac{6}{108}+...+\frac{6}{990}\)
=\(\frac{6}{3.6}+\frac{6}{6.9}+\frac{6}{9.12}+...+\frac{6}{30.33}\)
= 2.(\(\frac{3}{3.6}+\frac{3}{6.9}+\frac{3}{9.12}+...+\frac{3}{30.33}\))
=2.(\(\frac{1}{3}-\frac{1}{6}+\frac{1}{6}-\frac{1}{9}+\frac{1}{9}-\frac{1}{12}+...+\frac{1}{30}-\frac{1}{33}\))
=2.[\(\frac{1}{3}+\left(\frac{-1}{6}+\frac{1}{6}\right)+\left(\frac{-1}{9}+\frac{1}{9}\right)+...+\left(\frac{-1}{30}+\frac{1}{30}\right)+\frac{-1}{33}\)]
=2.\(\left[\frac{1}{3}+\frac{-1}{33}\right]\)
=2.\(\left[\frac{11}{33}+\frac{-1}{33}\right]\)
=2.\(\frac{10}{33}\)
=\(\frac{20}{33}\)