Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bác viết nhộn đề gồi :v
\(.\frac{x+4}{20}+\frac{x+3}{21}+\frac{x+2}{22}+\frac{x+1}{23}=-4\)
\(\Rightarrow\frac{x+4}{20}+1+\frac{x+3}{21}+1+\frac{x+2}{22}+1+\frac{x+1}{23}+1=0\)
\(\Rightarrow\frac{x+24}{20}+\frac{x+24}{21}+\frac{x+24}{22}+\frac{x+24}{23}=0\)
\(\Rightarrow\left(x+24\right)\left(\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+\frac{1}{23}\right)=0\)
=> x=-24
\(\frac{x+4}{20}+\frac{x+3}{21}\frac{x+2}{22}+\frac{x+1}{23}\)\(=-4\)
\(\Rightarrow\left(\frac{x+4}{20}+1\right)+\left(\frac{x+3}{21}+1\right)+\left(\frac{x+2}{22}+1\right)\)\(+\left(\frac{x+1}{23}+1\right)=0\)
\(\Rightarrow\left(\frac{x+4}{20}+\frac{20}{20}\right)+\left(\frac{x+3}{21}+\frac{21}{21}\right)\)\(+\left(\frac{x+2}{22}+\frac{22}{22}\right)+\left(\frac{x+1}{23}+\frac{23}{23}\right)=0\)
\(\frac{\Rightarrow x+24}{20}+\frac{x+24}{21}+\frac{x+24}{22}+\frac{x+24}{23}=0\)
\(\Rightarrow\left(x+24\right)+\left(\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+\frac{1}{23}\right)=0\)
Vì \(\frac{1}{20}+\frac{1}{21}+\frac{1}{22}+\frac{1}{23}\ne0\)
\(\Rightarrow x+24=0\)
\(\Rightarrow x=24\)
Chúc bạn học tốt ( -_- )
a ) Ta có : \(\frac{x+11}{10}+\frac{x+21}{20}+\frac{x+31}{30}=\frac{x+41}{40}+\frac{x+101}{5}\)
\(\Leftrightarrow\left(\frac{x+11}{10}-1\right)+\left(\frac{x+21}{10}-1\right)+\left(\frac{x+31}{30}-1\right)=\left(\frac{x+41}{40}-1\right)+\left(\frac{x+101}{50}-2\right)\)
\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{20}+\frac{x+1}{30}=\frac{x+1}{40}+\frac{x+1}{50}\)
\(\Rightarrow\frac{x+1}{10}+\frac{x+1}{20}+\frac{x+1}{30}-\frac{x+1}{40}-\frac{x+1}{50}=0\)
\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{20}+\frac{1}{30}-\frac{1}{40}-\frac{1}{50}\right)=0\)
Mà \(\left(\frac{1}{10}+\frac{1}{20}+\frac{1}{30}-\frac{1}{40}-\frac{1}{50}\right)\ne0\)
Nên x + 1 = 0
=> x = -1
\(e,\frac{22}{15}-x=-\frac{8}{27}\)
=> \(x=\frac{22}{15}-\left[-\frac{8}{27}\right]\)
=> \(x=\frac{22}{15}+\frac{8}{27}\)
=> \(x=\frac{198}{135}+\frac{40}{135}=\frac{198+40}{135}=\frac{238}{135}\)
\(g,\left[\frac{2x}{5}-1\right]:\left[-5\right]=\frac{1}{4}\)
=> \(\left[\frac{2x}{5}-\frac{1}{1}\right]=\frac{1}{4}\cdot\left[-5\right]\)
=> \(\left[\frac{2x}{5}-\frac{5}{5}\right]=-\frac{5}{4}\)
=> \(\frac{2x-5}{5}=-\frac{5}{4}\)
=> \(2x-5=-\frac{5}{4}\cdot5=-\frac{25}{4}\)
=> \(2x=-\frac{5}{4}\)
=> \(x=-\frac{5}{8}\)
\(h,-2\frac{1}{4}x+9\frac{1}{4}=20\)
=> \(-\frac{9}{4}x+\frac{37}{4}=20\)
=> \(-\frac{9}{4}x=20-\frac{37}{4}=\frac{43}{4}\)
=> \(x=\frac{43}{4}:\left[-\frac{9}{4}\right]=\frac{43}{4}\cdot\left[-\frac{4}{9}\right]=\frac{43}{1}\cdot\left[-\frac{1}{9}\right]=-\frac{43}{9}\)
\(i,-4\frac{3}{5}\cdot2\frac{4}{23}\le x\le-2\frac{3}{5}:1\frac{6}{15}\)
=> \(-\frac{23}{5}\cdot\frac{50}{23}\le x\le-\frac{13}{5}:\frac{21}{15}\)
=> \(-\frac{1}{1}\cdot\frac{10}{1}\le x\le-\frac{13}{5}\cdot\frac{15}{21}\)
=> \(-10\le x\le-\frac{13}{1}\cdot\frac{3}{21}\)
=> \(-10\le x\le-\frac{13}{1}\cdot\frac{1}{7}\)
=> \(-10\le x\le-\frac{13}{7}\)
Đến đây tìm x
\(\frac{4^{50}.3^2}{2^{23}.2^{22}}\)
\(=\frac{\left(2^2\right)^{50}.3^2}{2^{23+22}}\)
\(=\frac{2^{100}.3^2}{2^{45}}\)
\(=2^{55}.3^2\)