\(\frac{1}{2\times6}+\frac{1}{4\times9}+\frac{1}{6\times12}+...+\frac{1}{198\times30...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 3 2020

Ta có :

 1/2x6 + 1/4x9 + 1/6x12 +...+1/198 x 300

 = 1/6x2 + 1/6x6 + 1/6x12 + ....+1/6x9900

 = 1/6 x ( 1/2 + 1/6 + 1/ 12 +...+1/9900)

 = 1/6 x (1/1x2 + 1/2x3 + 1/3x4+...+1/99x100)

 =1/6x (1-1/2 + 1/2-1/3 + 1/3 - 1/4 + ....+1/99-1/100)

 =1/6x(1-1/100)

 =1/6 x 99/100

 = 33/200

k cho mình nha , học tốt

4 tháng 7 2019

:V Làm sai hết rồi sai ngay từ bước đầu tiên.

\(\frac{1}{3.4}-\frac{1}{4.5}-\frac{1}{5.6}-....-\frac{1}{9.10}\)

\(=\frac{1}{3.4}-\left(\frac{1}{4.5}+\frac{1}{5.6}+....+\frac{1}{9.10}\right)\)

\(=\frac{1}{12}-\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+....+\frac{1}{9}-\frac{1}{10}\right)\)

\(=\frac{1}{12}-\left(\frac{1}{4}-\frac{1}{10}\right)\)

\(=\frac{1}{12}-\frac{3}{20}\)

\(=\frac{-11}{12}\)

3 tháng 7 2019

\(\frac{1}{3.4}-\frac{1}{4.5}-...-\frac{1}{9.10}\)

\(-\left(\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)

\(-\left(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)\)

\(-\left(\frac{1}{3}-\frac{1}{10}\right)\)

\(-\frac{7}{30}\)

1 tháng 8 2018

a. \(\frac{20^5.5^{10}}{100^5}\)

\(=\frac{20^5.\left(5^2\right)^5}{100^5}\)

\(=\frac{20^5.25^5}{100^5}\)

\(=\frac{500^5}{100^5}\)

\(=\left(\frac{500}{100}\right)^5\)

\(=5^5=3125\)

b. \(\frac{\left(0,9\right)^5}{\left(0,3\right)^6}\)

\(=\frac{\left(0,9\right)^5}{\left(0,3\right)^5.0,3}\)

\(=\left(\frac{0,9}{0,3}\right)^5.\frac{1}{0,3}\)

\(=3^5.\frac{1}{0,3}\)

\(=810\)

c. \(\frac{6^3+3.6^2+3^3}{-13}\)

\(=\frac{\left(3.2\right)^3+3.\left(3.2\right)^2+3^3}{-13}\)

\(=\frac{3^3\left(2^3+2^2+1\right)}{-13}\)

\(=\frac{3^3.13}{-13}\)

\(=\left(-3\right)^3\)

\(=-27\)

Bài làm :

\(\frac{4^6\times9^5+120\times6^9}{8^4\times3^{12}-6^{11}}\)

\(=\frac{\left(2^2\right)^6\times\left(3^2\right)^5+2^3\times5\times3\times\left(2\times3\right)^9}{\left(2^3\right)^4\times3^{12}-\left(2\times3\right)^{11}}\)

\(=\frac{2^{12}\times3^{10}+2^3\times5\times3\times2^9\times3^9}{2^{12}\times3^{12}-2^{11}\times3^{11}}\)

\(=\frac{2^{12}\times3^{10}\times\left(1+5\right)}{2^{11}\times3^{11}\times\left(2\times3-1\right)}\)

\(=\frac{2\times6}{3\times5}\)

\(=\frac{4}{5}\)

Học tốt nhé

a)     \(1\frac{3}{19}+\frac{8}{21}-\frac{3}{19}+0.5+\frac{13}{21}\)

\(=\left(1\frac{3}{19}-\frac{3}{19}\right)+\left(\frac{8}{21}+\frac{13}{21}\right)+0.5\)

\(=1+1+0.5=2.5\)

b)  \(\left(-\frac{3}{4}+\frac{2}{7}\right):\frac{3}{7}+\left(\frac{5}{7}+\frac{-1}{4}\right):\frac{3}{7}\)

\(=\left(\frac{-3}{4}+\frac{2}{7}+\frac{5}{7}+\frac{-1}{4}\right):\frac{3}{7}\)

\(=0:\frac{3}{7}=0\)

22 tháng 9 2019

\(\frac{\left(-0,25\right)^{-5}.9^4.\left(-2\right)^{-3}-2^{-2}.6^9}{2^9.3^6+6^6.40}\)

\(=\frac{\left(-4\right)^5.\left(3^2\right)^4.\left(-2\right)^{-3}-2^{-2}.\left(3.2\right)^9}{2^9.3^6+\left(2.3\right)^6.2^3.5}\)

\(=\frac{-\left(2^2\right)^5.3^8.\left(-2\right)^{-3}-2^{-2}.3^9.2^9}{2^9.3^6+2^6.3^6.2^3.5}\)

\(=\frac{-2^{10}3^8.\left(-2\right)^{-3}-2^7.3^9}{2^9.3^6+2^9.3^6.5}\)

\(=\frac{2^73^8.-2^7.3^9}{2^9.3^6+2^9.3^6.5}\)

\(=\frac{2^7.3^8.\left(1-3\right)}{2^9.3^6.\left(1+5\right)}\)

\(=\frac{3^2.\left(-2\right)}{2^2.6}\)

\(=\frac{-3}{4}\)