\(\dfrac{x^2}{2x^2+8x+8}.\dfrac{3x+6}{-x}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 1 2024

\(\dfrac{x^2}{2x^2+8x+8}\cdot\dfrac{3x+6}{-x}\left(dkxd:x\ne0;x\ne-2\right)\)

\(=\dfrac{x}{2\left(x^2+4x+4\right)}\cdot\dfrac{3x+6}{-1}\)

\(=\dfrac{x\cdot3\left(x+2\right)}{-2\left(x+2\right)^2}\)

\(=\dfrac{3x}{-2\left(x+2\right)}=\dfrac{-3x}{2x+4}\)

17 tháng 3 2018

\(A=\dfrac{3x^2-6x+17}{x^2-2x+5}\)

= \(\dfrac{3x^2-6x+15+2}{x^2-2x+5}\)

=\(\dfrac{3\left(x^2-2x+5\right)+2}{x^2-2x+5}\)

= \(\dfrac{3\cdot\left(x^2-2x+5\right)}{x^2-2x+5}+\dfrac{2}{x^2-2x+5}\)

= \(3+\dfrac{2}{x^2-2x+5}\)

= \(3+\dfrac{2}{x^2-2x+1+4}\)

= \(3+\dfrac{2}{\left(x-1\right)^2+4}\)

vì (x-1)2 ≥ 0 ∀ x

⇔ (x-1)2 +4 ≥ 4

\(\dfrac{2}{\left(x-1\right)^2+4}\le\dfrac{1}{2}\)

\(3+\dfrac{2}{\left(x-1\right)^2+4}\le\dfrac{7}{2}\)

⇔ A \(\le\dfrac{7}{2}\)

⇔ Min A =\(\dfrac{7}{2}\)

khi x-1=0

⇔ x=1

vậy ....

17 tháng 3 2018

Ta có:\(B=\dfrac{2x^2-16x+41}{x^2-8x+22}\)

\(B=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}\)

\(B=2-\dfrac{3}{x^2-8x+16+6}\)

\(B=2-\dfrac{3}{\left(x-4\right)^2+6}\ge2-\dfrac{3}{6}=\dfrac{5}{2}\)

\(\Rightarrow MINB=\dfrac{5}{2}\Leftrightarrow x=4\)

20 tháng 2 2018

a)\(\dfrac{3x+2}{3x-2}-\dfrac{6}{2+3x}=\dfrac{9x^2}{9x^2-4}\left(ĐKXĐ:x\ne\pm\dfrac{2}{3}\right)\)

\(\Leftrightarrow\dfrac{3x+2}{3x-2}-\dfrac{6}{3x+2}=\dfrac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)

\(\Leftrightarrow\dfrac{\left(3x+2\right)^2-6\left(3x-2\right)}{\left(3x-2\right)\left(3x+2\right)}=\dfrac{9x^2}{\left(3x-2\right)\left(3x+2\right)}\)

\(\Rightarrow9x^2+12x+4-18x+12=9x^2\)

\(\Leftrightarrow9x^2-6x+16-9x^2=0\)

\(\Leftrightarrow-6x=-16\)

\(\Leftrightarrow x=\dfrac{8}{3}\) (thỏa mãn ĐKXĐ)

Vậy .................

20 tháng 2 2018

b) \(\dfrac{5-x}{4x^2-8x}+\dfrac{7}{8x}=\dfrac{x-1}{2x\left(x-2\right)}+\dfrac{1}{8x-16}\left(ĐKXĐ:x\ne0;x\ne2\right)\)

\(\Leftrightarrow\dfrac{5-x}{4x\left(x-2\right)}+\dfrac{7}{8x}=\dfrac{x-1}{2x\left(x-2\right)}+\dfrac{1}{8\left(x-2\right)}\)

\(\Leftrightarrow\dfrac{2\left(5-x\right)+7\left(x-2\right)}{8x\left(x-2\right)}=\dfrac{4\left(x-1\right)+x}{8x\left(x-2\right)}\)

\(\Rightarrow10-2x+7x-14=4x-4+x\)

\(\Leftrightarrow5x-4=5x-4\)

\(\Leftrightarrow0x=0\) (vô số nghiệm)

Vậy \(S=R\backslash\left\{0;2\right\}\)

30 tháng 4 2017

bài này đề bài là chứng minh hay là giải bất phương trình vậy bạn

1 tháng 5 2017

giả pt á b

a: =>5-x+6=12-8x

=>-x+11=12-8x

=>7x=1

hay x=1/7

b: \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)

\(\Leftrightarrow9x+6-3x-1=12x+10\)

=>12x+10=6x+5

=>6x=-5

hay x=-5/6

d: =>(x-2)(x-3)=0

=>x=2 hoặc x=3

25 tháng 3 2018

a) ĐKXĐ: x khác 0

\(x+\dfrac{5}{x}>0\)

\(\Leftrightarrow x^2+5>0\) ( luôn đúng)

Vậy bất pt vô số nghiệm ( loại x = 0)

d)

\(\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{x-2}{8}-\dfrac{x+3}{8}\)

\(\Leftrightarrow\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{x-2-x-3}{8}\)

\(\Leftrightarrow\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{-5}{8}\)

\(\Leftrightarrow2x+2-4x+4>-15\)

\(\Leftrightarrow-2x>-21\)

\(\Leftrightarrow x< \dfrac{21}{2}\)

Vậy....................

25 tháng 3 2018

a)\(x+\dfrac{5}{x}>0\left(ĐKXĐ:x\ne0\right)\)

\(\Leftrightarrow\dfrac{x^2+5}{x}>0\)

\(x^2+5>0\)

\(\Rightarrow x>0\)

d)\(\dfrac{x+1}{12}-\dfrac{x-1}{6}>\dfrac{x-2}{8}-\dfrac{x+3}{8}\)

\(\Leftrightarrow\dfrac{x+1}{12}-\dfrac{2x-2}{12}>\dfrac{-5}{8}\)

\(\Leftrightarrow\dfrac{-x+3}{12}>\dfrac{-5}{8}\)

\(\Leftrightarrow-x+3>-\dfrac{15}{2}\)

\(\Leftrightarrow-x>-\dfrac{21}{2}\)

\(\Leftrightarrow x< \dfrac{21}{2}\)

Câu 1: 

\(\dfrac{x^2-10x+21}{x^3-7x^2+x-7}=\dfrac{\left(x-7\right)\left(x-3\right)}{\left(x-7\right)\left(x^2+1\right)}=\dfrac{x-3}{x^2+1}\)

\(\dfrac{2x^2-x-15}{2x^3+5x^2+2x+5}=\dfrac{2x^2-6x+5x-15}{\left(2x+5\right)\left(x^2+1\right)}=\dfrac{\left(2x+5\right)\left(x-3\right)}{\left(2x+5\right)\left(x^2+1\right)}=\dfrac{x-3}{x^2+1}\)

Do đó: \(\dfrac{x^2-10x+21}{x^3-7x^2+x-7}=\dfrac{2x^2-x-15}{2x^3+5x^2+2x+5}\)

20 tháng 11 2022

a: \(\dfrac{5}{2x+6}=\dfrac{5\left(x-3\right)}{2\left(x+3\right)\left(x-3\right)}\)

3/x^2-9=6/2(x+3)(x-3)

b: \(\dfrac{2x}{x^2-8x+16}=\dfrac{2x}{\left(x-4\right)^2}=\dfrac{6x^2}{3x\left(x-4\right)^2}\)

\(\dfrac{x}{3x^2-12x}=\dfrac{x}{3x\left(x-4\right)}=\dfrac{x\left(x-4\right)}{3x\left(x-4\right)^2}\)

c: \(\dfrac{x+y}{x}=\dfrac{\left(x+y\right)\cdot\left(x-y\right)}{x\left(x-y\right)}\)

x/x-y=x^2/x(x-y)

e: \(\dfrac{1}{x+2}=\dfrac{2x-x^2}{x\left(x+2\right)\left(2-x\right)}\)

\(\dfrac{8}{2x-x^2}=\dfrac{8\left(x+2\right)}{x\left(2-x\right)\left(2+x\right)}\)

7 tháng 6 2017

giải pt sau

g) 11+8x-3=5x-3+x

\(\Leftrightarrow\) 8x + 8 = 6x - 3

<=> 8x-6x = -3 - 8

<=> 2x = -11

=> x=-\(\dfrac{11}{2}\)

Vậy tập nghiệm của PT là : S={\(-\dfrac{11}{2}\)}

h)4-2x+15=9x+4-2x

<=> 19 - 2x = 7x + 4

<=> -2x - 7x = 4 - 19

<=> -9x = -15

=> x=\(\dfrac{15}{9}=\dfrac{5}{3}\)

Vậy tập nghiệm của pt là : S={\(\dfrac{5}{3}\)}

g)\(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=\dfrac{5}{3}+2x\)

<=> \(\dfrac{3\left(3x+2\right)}{6}-\dfrac{3x+1}{6}=\dfrac{5.2+6.2x}{6}\)

<=> 9x + 6 - 3x + 1 = 10 + 12x

<=> 6x + 7 = 10 + 12x

<=> 6x -12x = 10-7

<=> -6x = 3

=> x= \(-\dfrac{1}{2}\)

Vậy tập nghiệm của PT là : S={\(-\dfrac{1}{2}\)}

\(h,\dfrac{x+4}{5}-x+4=\dfrac{4x+2}{5}-5\)

<=> \(\dfrac{x+4-5\left(x+4\right)}{5}=\dfrac{4x+2-5.5}{5}\)

<=> x + 4 - 5x - 20 = 4x + 2 - 25

<=> x - 5x - 4x = 2-25-4+20

<=> -8x = -7

=> x= \(\dfrac{7}{8}\)

Vậy tập nghiệm của PT là S={\(\dfrac{7}{8}\)}

\(i,\dfrac{4x+3}{5}-\dfrac{6x-2}{7}=\dfrac{5x+4}{3}+3\)

<=> \(\dfrac{21\left(4x+3\right)}{105}\)-\(\dfrac{15\left(6x-2\right)}{105}\)=\(\dfrac{35\left(5x+4\right)+3.105}{105}\)

<=> 84x + 63 - 90x + 30 = 175x + 140 + 315

<=> 84x - 90x - 175x = 140 + 315 - 63 - 30

<=> -181x = 362

=> x = -2

Vậy tập nghiệm của PT là : S={-2}

K) \(\dfrac{5x+2}{6}-\dfrac{8x-1}{3}=\dfrac{4x+2}{5}-5\)

<=> \(\dfrac{5\left(5x+2\right)}{30}-\dfrac{10\left(8x-1\right)}{30}=\dfrac{6\left(4x+2\right)-150}{30}\)

<=> 25x + 10 - 80x - 10 = 24x + 12 - 150

<=> -55x = 24x - 138

<=> -55x - 24x = -138

=> -79x = -138

=> x=\(\dfrac{138}{79}\)

Vậy tập nghiệm của PT là S={\(\dfrac{138}{79}\)}

m) \(\dfrac{2x-1}{5}-\dfrac{x-2}{3}=\dfrac{x+7}{15}\)

<=> \(\dfrac{3\left(2x-1\right)-5\left(x-2\right)}{15}=\dfrac{x+7}{15}\)

<=> 6x - 3 - 5x + 10 = x+7

<=> x + 7 = x+7

<=> 0x = 0

=> PT vô nghiệm

Vậy S=\(\varnothing\)

n)\(\dfrac{1}{4}\left(x+3\right)=3-\dfrac{1}{2}\left(x+1\right)-\dfrac{1}{3}\left(x+2\right)\)

<=> \(\dfrac{1}{4}x+\dfrac{3}{4}=3-\dfrac{1}{2}x-\dfrac{1}{2}-\dfrac{1}{3}x-\dfrac{2}{3}\)

<=> \(\dfrac{1}{4}x+\dfrac{1}{2}x+\dfrac{1}{3}x=3-\dfrac{1}{2}-\dfrac{2}{3}-\dfrac{3}{4}\)

<=> \(\dfrac{13}{12}x=\dfrac{13}{12}\)

=> x= 1

Vậy S={1}

p) \(\dfrac{x}{3}-\dfrac{2x+1}{6}=\dfrac{x}{6}-6\)

<=> \(\dfrac{2x-2x+1}{6}=\dfrac{x-36}{6}\)

<=> 2x -2x + 1= x-36

<=> 2x-2x-x = -37

=> x = 37

Vậy S={37}

q) \(\dfrac{2+x}{5}-0,5x=\dfrac{1-2x}{4}+0,25\)

<=> \(\dfrac{4\left(2+x\right)-20.0,5x}{20}=\dfrac{5\left(1-2x\right)+20.0,25}{20}\)

<=> 8 + 4x - 10x = 5 - 10x + 5

<=> 4x-10x + 10x = 5+5-8

<=> 4x = 2

=> x= \(\dfrac{1}{2}\)

Vậy S={\(\dfrac{1}{2}\)}

7 tháng 6 2017

g) \(11+8x-3=5x-3+x\)

\(\Leftrightarrow8+8x=6x-3\)

\(\Leftrightarrow8x-6x=-3-8\)

\(\Leftrightarrow2x=-11\)

\(\Leftrightarrow x=-\dfrac{11}{2}\)

h, \(4-2x+15=9x+4-2x\)

\(\Leftrightarrow-2x-9x+2x=4-4-15\)

\(\Leftrightarrow-9x=-15\)

\(\Leftrightarrow x=\dfrac{-15}{-9}=\dfrac{5}{3}\)

24 tháng 11 2022

Sửa đề: \(\dfrac{2}{x+2}+\dfrac{3x^2-6x}{x^2-2x+4}+\dfrac{10x^2+28x-8}{x^4+8x}\)

\(=\dfrac{2}{x+2}+\dfrac{3x\left(x-2\right)}{x^2+2x+4}+\dfrac{10x^2+28x-8}{x\left(x+2\right)\left(x^2-2x+4\right)}\)

\(=\dfrac{2x\left(x^2+2x+4\right)+3x^2\left(x^2-4\right)+10x^2+28x-8}{x\left(x+2\right)\left(x^2-2x+4\right)}\)

\(=\dfrac{2x^3+4x^2+8x+3x^4-12x^2+10x^2+28x-8}{x\left(x+2\right)\left(x^2-2x+4\right)}\)

\(=\dfrac{3x^4+2x^3+2x^2+36x-8}{x\left(x+2\right)\left(x^2-2x+4\right)}\)

 

11 tháng 7 2017

\(D=\dfrac{x-2}{x+2}.\left(\dfrac{5x+10}{7x-14}+\dfrac{x-2}{3x-6}\right)+\dfrac{3x^2-12}{2x^2-8x+8}\)

\(D=\dfrac{x-2}{x+2}.\left(\dfrac{5\left(x+2\right)}{7\left(x-2\right)}+\dfrac{x-2}{3\left(x-2\right)}\right)+\dfrac{3\left(x^2-4\right)}{2\left(x^2-4x+4\right)}\)

\(D=\dfrac{x-2}{x+2}.\dfrac{5\left(x+2\right)}{7\left(x-2\right)}+\dfrac{x-2}{3\left(x-2\right)}.\dfrac{x-2}{x+2}+\dfrac{3\left(x^2-4\right)}{2\left(x^2-4x+4\right)}\)

\(D=\dfrac{5}{7}+\dfrac{x-2}{2\left(x+2\right)}+\dfrac{3\left(x-2\right)\left(x+2\right)}{2\left(x-2\right)^2}\)

\(D=\dfrac{5}{7}+\dfrac{x-2}{2\left(x+2\right)}+\dfrac{3\left(x+2\right)}{2\left(x-2\right)}\)

\(D=\dfrac{5}{7}-\dfrac{-\left(x-2\right)}{2\left(x-2\right)}+\dfrac{3\left(x+2\right)}{2\left(x-2\right)}\)

\(D=\dfrac{5}{7}-\dfrac{-\left(x-2\right)+3x+2}{2\left(x-2\right)}\)

\(D=\dfrac{5}{7}-\dfrac{2x+4}{2\left(x-2\right)}\)

\(D=\dfrac{5}{7}+\dfrac{2\left(x-2\right)}{2\left(x-2\right)}=\dfrac{5}{7}+\dfrac{x-2}{x-2}\)

\(D=\dfrac{5}{7}+1=\dfrac{12}{7}\)

Vậy \(D=\dfrac{12}{7}\)