Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{x}{x-3}+\dfrac{9-6x}{x^2-3x}=\dfrac{x^2}{x\left(x-3\right)}+\dfrac{9-6x}{x\left(x-3\right)}=\dfrac{x^2-6x+9}{x\left(x-3\right)}=\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}=\dfrac{x-3}{x}\)
b: Đặt \(x^2-6x-2=a\)
Theo đề, ta có: \(a+\dfrac{14}{a+9}=0\)
=>(a+2)(a+7)=0
\(\Leftrightarrow\left(x^2-6x\right)\left(x^2-6x+5\right)=0\)
=>x(x-6)(x-1)(x-5)=0
hay \(x\in\left\{0;1;6;5\right\}\)
c: \(\Leftrightarrow\dfrac{-8x^2}{3\left(2x-1\right)\left(2x+1\right)}=\dfrac{2x}{3\left(2x-1\right)}-\dfrac{8x+1}{4\left(2x+1\right)}\)
\(\Leftrightarrow-32x^2=8x\left(2x+1\right)-3\left(8x+1\right)\left(2x-1\right)\)
\(\Leftrightarrow-32x^2=16x^2+8x-3\left(16x^2-8x+2x-1\right)\)
\(\Leftrightarrow-48x^2=8x-48x^2+18x+3\)
=>26x=-3
hay x=-3/26
a) \(x^3-\dfrac{1}{4}x=0\)
⇔ \(x.\left(x^2-\dfrac{1}{4}\right)=0\)
⇔ \(x\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)=0\)
⇔ x = 0 hoặc \(x=\dfrac{1}{2}\) hoặc \(x=\dfrac{-1}{2}\)
b) (2x - 1)2 - (x + 3)2 = 0
⇔ (2x - 1 - x - 3)(2x - 1 + x + 3) = 0
⇔ (x - 4)(3x +2) = 0
⇔ x = 4 hoặc \(x=\dfrac{-2}{3}\)
c) 2x2 - x - 6 = 0
⇔ 2x2 - 4x + 3x - 6 = 0
⇔ 2x(x - 2) + 3(x - 2) = 0
⇔ (x - 2) (2x + 3) = 0
⇔ x = 2 hoặc \(x=\dfrac{-3}{2}\)
2)a.
\(B=\left(\dfrac{x}{x^2-36}-\dfrac{x-6}{x^2+6x}\right):\dfrac{2x-6}{x^2+6x}\\ =\left(\dfrac{x\left(x^2+6x\right)-\left(x-6\right)\left(x^2-36\right)}{\left(x^2-36\right)\left(x^2+6x\right)}\right).\dfrac{x^2+6x}{2x-6}\\ =\dfrac{x^2\left(x+6\right)-\left(x-6\right)^2.\left(x+6\right)}{x^2-36}.\dfrac{1}{2x-6}\\ =\dfrac{\left(x+6\right)\left(x^2-\left(x-6\right)^2\right)}{x^2-36}.\dfrac{1}{2x-6}\\ =\dfrac{\left(x-x+6\right)\left(x+x-6\right)}{x-6}.\dfrac{1}{2x-6}\\ =\dfrac{6.\left(2x-6\right)}{x-6}.\dfrac{1}{2x-6}\\ =\dfrac{6}{x-6}\)
b)
\(x=2\Leftrightarrow B=\dfrac{6}{x-6}=\dfrac{6}{2-6}=\dfrac{6}{-4}=-\dfrac{3}{2}\)
\(\frac{x^2+3x+9}{2x+10}.\frac{x+5}{x^3-27}\)
\(=\frac{x^2+3x+9}{2\left(x+5\right)}.\frac{x+5}{\left(x-3\right)\left(x^2+3x+9\right)}\)
\(=\frac{\left(x+5\right)\left(x^2+3x+9\right)}{2\left(x+5\right)\left(x-3\right)\left(x^2+3x+9\right)}\)
\(=\frac{1}{2\left(x-3\right)}\)
\(\left(\frac{6x+1}{x^2-6x}+\frac{6x-1}{x^2+6x}\right)\left(\frac{x^2-36}{x^2+1}\right)\)
\(=\left[\frac{6x+1}{x\left(x-6\right)}+\frac{6x-1}{x\left(x+6\right)}\right]\left[\frac{\left(x-6\right)\left(x+6\right)}{x^2+1}\right]\)
\(=\frac{\left(6x+1\right)\left(x+6\right)+\left(6x-1\right)\left(x-6\right)}{x\left(x-6\right)\left(x+6\right)}.\frac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)
\(=\frac{6x^2+36x+x+6+6x^2-36x-x+6}{x\left(x-6\right)\left(x+6\right)}.\frac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)
\(=\frac{12x^2+12}{x\left(x-6\right)\left(x+6\right)}.\frac{\left(x-6\right)\left(x+6\right)}{x^2+1}\)
\(=\frac{12\left(x^2+1\right).\left(x-6\right)\left(x+6\right)}{x\left(x-6\right)\left(x+6\right)\left(x^2+1\right)}\)
\(=\frac{12}{x}\)
\(A=\left(\dfrac{x}{\left(x-6\right)\left(x+6\right)}-\dfrac{x-6}{x\left(x+6\right)}\right)\cdot\dfrac{x\left(x+6\right)}{2x-6}-\dfrac{x}{x-6}\)
\(=\dfrac{x^2-x^2+12x-36}{x\left(x-6\right)\left(x+6\right)}\cdot\dfrac{x\left(x+6\right)}{2\left(x-3\right)}-\dfrac{x}{x-6}\)
\(=\dfrac{12\left(x-3\right)}{x-6}\cdot\dfrac{1}{2\left(x-3\right)}-\dfrac{x}{x-6}\)
\(=\dfrac{12}{2\left(x-6\right)}-\dfrac{x}{x-6}=\dfrac{6-x}{x-6}=-1\)
ta có:
(\(\dfrac{x}{x^2-36}-\dfrac{x-6}{x^2+6x}\)):\(\dfrac{2x-6}{x^2+6x}\)+\(\dfrac{x}{6-x}\)
= (\(\dfrac{x}{\left(x-6\right)\left(x+6\right)}-\dfrac{\left(x-6\right)}{\left(x+6\right)\left(x-6\right)}\)):\(\dfrac{2x-6}{x^2+6x}\)+\(\dfrac{x}{6-x}\)
= (\(\dfrac{x^2}{x\left(x-6\right)\left(x+6\right)}-\dfrac{\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}\)).\(\dfrac{x^2+6x}{2x-6}\)+\(\dfrac{x}{6-x}\)
= \(\dfrac{x^2-\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}\).\(\dfrac{x^2+6x}{2x-6}\)+\(\dfrac{x}{6-x}\)
= \(\dfrac{x^2-x^2+12x-36}{x\left(x-6\right)\left(x+6\right)}\).\(\dfrac{x^2+6x}{2x-6}\)+\(\dfrac{x}{6-x}\)
= \(\dfrac{12x-36}{x\left(x-6\right)\left(x+6\right)}\). \(\dfrac{x^2+6x}{2x-6}\)+\(\dfrac{x}{6-x}\)
= \(\dfrac{12\left(x-3\right)}{x\left(x-6\right)\left(x+6\right)}\).\(\dfrac{x\left(x+6\right)}{2\left(x-3\right)}\)+\(\dfrac{x}{6-x}\)
= \(\dfrac{6}{x-6}\)+\(\dfrac{x}{6-x}\)
= \(\dfrac{6}{x-6}\)- \(\dfrac{x}{x-6}\)
= \(\dfrac{6-x}{x-6}\)
= \(\dfrac{-\left(x-6\right)}{x-6}\)
= -1
a, \(6x^2-5x+3=2x-3x\left(3-2x\right)\)
⇔ \(6x^2-5x+3=2x-9x+6x^2\)
⇔ \(6x^2-5x+3-6x^2+9x-2x=0\)
⇔ \(2x+3=0\)
⇔ \(2x=-3\)
⇔ \(x=-\dfrac{3}{2}\)
b, \(\dfrac{2\left(x-4\right)}{4}-\dfrac{3+2x}{10}=x+\dfrac{1-x}{5}\)
⇔ \(\dfrac{20\left(x-4\right)}{4.10}-\dfrac{4\left(3+2x\right)}{4.10}=\dfrac{5x}{5}+\dfrac{1-x}{5}\)
⇔ \(\dfrac{20x-80}{40}-\dfrac{12+8x}{40}=\dfrac{5x+1-x}{5}\)
⇔ \(\dfrac{20x-80-12-8x}{40}=\dfrac{4x+1}{5}\)
⇔ \(\dfrac{12x-92}{40}-\dfrac{4x+1}{5}=0\)
⇔ \(\dfrac{12x-92}{40}-\dfrac{8\left(4x+1\right)}{40}=0\)
⇔ \(12x-92-8\left(4x+1\right)=0\)
⇔ 12x - 92 - 32x - 8 = 0
⇔ -100 - 20x = 0
⇔ 20x = -100
⇔ x = -100 : 20
⇔ x = -5
1) điều kiện xác định : \(x\notin\left\{-1;-2;-3;-4\right\}\)
ta có : \(\dfrac{1}{x^2+3x+2}+\dfrac{1}{x^2+5x+6}+\dfrac{1}{x^2+7x+12}=\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{1}{\left(x+1\right)\left(x+2\right)}+\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\) \(\Leftrightarrow\dfrac{\left(x+3\right)\left(x+4\right)+\left(x+1\right)\left(x+4\right)+\left(x+1\right)\left(x+2\right)}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)\(\Leftrightarrow\dfrac{x^2+7x+12+x^2+5x+4+x^2+3x+2}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{3x^2+15x+18}{\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)}=\dfrac{1}{6}\)
\(\Leftrightarrow6\left(3x^2+15x+18\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)
\(\Leftrightarrow18\left(x^2+5x+6\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)
\(\Leftrightarrow18\left(x+2\right)\left(x+3\right)=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)\)
\(\Leftrightarrow18=\left(x+1\right)\left(x+4\right)\) ( vì điều kiện xác định )
\(\Leftrightarrow18=x^2+5x+4\Leftrightarrow x^2+5x-14=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+7\right)=0\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+7=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-7\end{matrix}\right.\left(tmđk\right)\)
vậy \(x=2\) hoặc \(x=-7\) mấy câu kia lm tương tự nha bn
a, \(\dfrac{x^2-49}{x-7}\) + x - 2 = \(\dfrac{\left(x-7\right)\left(x+7\right)}{x-7}\) + x - 2 = x + 7 + x - 2 = 2x + 5
b, \(\left(\dfrac{x}{x^2-36}-\dfrac{x-6}{x^2+6x}\right)\) . \(\dfrac{x^2+6x}{2x-6}\)
= \(\left(\dfrac{x^2}{x\left(x-6\right)\left(x+6\right)}-\dfrac{\left(x-6\right)^2}{x\left(x+6\right)\left(x-6\right)}\right)\) . \(\dfrac{x\left(x+6\right)}{2x-6}\)
= \(\left(\dfrac{x^2-\left(x-6\right)^2}{x\left(x-6\right)\left(x+6\right)}\right)\) . \(\dfrac{x\left(x+6\right)}{2x-6}\)
= \(\left(\dfrac{6\left(2x-6\right)}{x\left(x-6\right)\left(x+6\right)}\right)\) . \(\dfrac{x\left(x+6\right)}{2x-6}\)
= \(\dfrac{6}{x-6}\)
1. = \(\dfrac{\left(x-7\right)\left(x+7\right)}{x-7}\) + x-2
= x+7 +x-2
= 2x-5
2. = (\(\dfrac{x}{\left(x-6\right)\left(x+6\right)}\) - \(\dfrac{x-6}{x\left(x+6\right)}\) ) \(^{\dfrac{x^2+6x}{2x-6}}\)
= ( \(\dfrac{x^2}{x\left(x-6\right)\left(x+6\right)}\) - \(\dfrac{\left(x-6\right)\left(x-6\right)}{x\left(x-6\right)\left(x+6\right)}\) ) \(\dfrac{x^2+6x}{2x-6}\)
= \(\dfrac{x^2-\left(x^2-12x+36\right)}{x\left(x-6\right)\left(x+6\right)}\) . \(\dfrac{x^2+6x}{2x-6}\)
= \(\dfrac{x^2-x^2+12x-36}{x\left(x-6\right)\left(x+6\right)}\) . \(\dfrac{x^2+6x}{2x-6}\)
= \(\dfrac{12x-36}{x\left(x-6\right)\left(x+6\right)}\) . \(\dfrac{x^2+6x}{2x-6}\)
= \(\dfrac{12\left(x-3\right)x\left(x+6\right)}{x\left(x-6\right)\left(x+6\right)2\left(x-3\right)}\)
= \(\dfrac{6}{x-6}\)
Chúc bạn học tốt!