Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\\ =\dfrac{2^{19}.3^9+5.2^{18}.3^9}{2^9.3^9+2^{20}.3^{10}}\\ =\dfrac{2^{18}.3^9\left(2+5\right)}{2^9.3^9\left(2^{11}.3+1\right)}\\ =\dfrac{2^9.7}{2^9.12+1}=\dfrac{7}{13}\)
\(=\dfrac{2^{19}\cdot3^9+2^{18}\cdot3^9\cdot5}{2^{19}\cdot3^9+2^{20}\cdot3^{10}}=\dfrac{2^{18}\cdot3^9\left(5+2\right)}{2^{19}\cdot3^9\left(1+2\cdot3\right)}=\dfrac{1}{2}\)
\(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
\(=\frac{2^{19}.\left(3^3\right)^3+3.5.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(3.2^2\right)^{10}}\)
\(=\frac{2^{19}.3^9+5.2^{18}.3^9}{2^{19}.3^9+3^{10}.2^{20}}\)
\(=\frac{2^{18}.3^9\left(2+5\right)}{2^{19}.3^9\left(1+3.2\right)}\)
\(=\frac{7}{2.7}=\frac{1}{2}\)
\(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}=\frac{2^{19}.\left(3^3\right)^3+5.3.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(2^2.3\right)^{10}}\)
\(=\frac{2^{19}.3^9+5.3.2^{18}.3^8}{2^9.3^9.2^{10}+2^{20}.3^{10}}=\frac{2^{19}.3^9+5.2^{18}.3^9}{2^{19}.3^9+2^{20}.3^{10}}=\frac{2^{18}.3^9\left(2+5\right)}{2^{19}.3^9\left(1+2.3\right)}=\frac{2^{18}.3^9}{2^{19}.3^9}=\frac{1}{2}\)
P/s: Sai gì bỏ qua =)
\(=\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}=\frac{2^{19}.3^9+3.5.2^{18}.3^8}{6^9.2^{10}+6^{10}.2^{10}}=\frac{2^{19}.3^9+3^9.5.2^{18}}{6^9.2^{10}.\left(1+6\right)}=\frac{2^{18}.3^9.\left(2+5\right)}{2^9.3^9.2^{10}}=\frac{2^{18}.7}{2^{19}.7}=\frac{1}{2}\)
\(=\frac{2^{19}.3^9+3^9.5.2^{18}}{2^9.3^9.2^{10}+2^{20}.3^{10}}=\frac{2^{18}.3^9\left(2+5\right)}{2^{19}.3^9\left(1+2.3\right)}=\frac{1}{2}\)
\(\frac{2^{19}.27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
\(=\frac{2^{19}.\left(3^3\right)^3+3.5.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(2^2.3\right)^{10}}\)
\(=\frac{2^{19}.3^9+3.5.2^{18}.3^8}{2^9.3^9.2^{10}+2^{20}.3^{10}}\)
\(=\frac{2^{19}.3^9.\left(1+5\right)}{2^{19}.3^9.\left(1+2.3\right)}=\frac{6}{7}\)
\(\dfrac{2^{19}+27^3+15.4^9.9^4}{6^9.2^{10}+12^{10}}\)
\(=\dfrac{2^{19}+\left(3^3\right)^3+5.3.\left(2^2\right)^9.\left(3^2\right)^4}{\left(2.3\right)^9.2^{10}+\left(3.4\right)^{10}}\)
\(=\dfrac{2^{19}.3^9+3.5.2^{18}.3^8}{3^9.2^9.2^{10}+3^{10}.4^{10}}\)
\(=\dfrac{2^{19}.3^9+5.2^{18}.3^9}{3^9.2^{19}+3^{10}.\left(2^2\right)^{10}}\)
\(=\dfrac{2^{18}.3^9.\left(2.5\right)}{3^9.2^{19}+3^{10}.2^{20}}\)
\(=\dfrac{2^{18}.3^9.7}{2^{19}.3^9.\left(1+3.2\right)}\)
\(=\dfrac{7}{2\left(1+6\right)}\)
\(=\dfrac{7}{2.7}\)
\(=\dfrac{1}{2}\)
a) \(5^{20}và2550^{10}\)
\(5^{20}=\left(5^2\right)^{10}=25^{10}< 2550^{10}\)
=> \(5^{20}< 2550^{10}\)
b) \(999^{10}và999999^5\)
\(999^{10}=\left(999^2\right)^5=1998^5< 999999^5\)
=> \(999^{10}< 999999^5\)
c) \(\left(\dfrac{-1^{300}}{5}\right)và\left(\dfrac{-1^{500}}{3}\right)\)
\(\left(\dfrac{-1^{300}}{5}\right)=\dfrac{-1}{5}\)
\(\left(\dfrac{-1^{500}}{3}\right)=\dfrac{-1}{3}\)
\(\dfrac{-1}{5}=\dfrac{-3}{15}\)
\(\dfrac{-1}{3}=\dfrac{-5}{15}\)
=> \(\dfrac{-3}{15}>\dfrac{-5}{15}\)
=> \(\left(\dfrac{-1^{300}}{5}\right)>\left(\dfrac{-1^{500}}{3}\right)\)
\(=\dfrac{2\cdot3^9+3\cdot5\cdot2^{18}\cdot3^8}{2^9\cdot3^9\cdot2^{10}+2^{20}\cdot3^{10}}=\dfrac{2\cdot3^9+3^9\cdot2^{18}\cdot5}{2^{19}\cdot3^9+2^{20}\cdot3^{10}}\\ =\dfrac{2\cdot3^9\left(1+2^{17}\cdot5\right)}{2^{19}\cdot3^9\left(1+2\cdot3\right)}=\dfrac{1+2^{17}\cdot5}{2^{18}\cdot7}\)
Thanks