Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
\(\Leftrightarrow3A=1+\frac{1}{3}+\frac{1}{3^{^2}}+...+\frac{1}{3^{98}}\)
\(\Leftrightarrow3A-A=1-\frac{1}{3^{99}}\)
\(\Leftrightarrow2A=1-\frac{1}{3^{99}}\)
\(\Leftrightarrow A=\left(1-\frac{1}{3^{99}}\right)\div2\)
Ta có : \(A=3+3^2+3^3+.....+3^{2016}\)
\(\Rightarrow3A=3^2+3^3+3^4+......+3^{2017}\)
\(\Rightarrow3A-A=3^{2017}-3\)
\(\Rightarrow2A=3^{2017}-3\)
\(\Rightarrow A=\frac{3^{2017}-3}{2}\)
\(B=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+.....+\frac{1}{1024}\)
\(\Rightarrow2B=1+\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{512}\)
\(\Rightarrow2B-B=1-\frac{1}{1024}\)
\(\Rightarrow B=\frac{1023}{1024}\)
\(B=3+3^2+.........+3^{99}\)
\(\Leftrightarrow3B=3^2+3^3+.......+3^{100}\)
\(\Leftrightarrow3B-B=\left(3^2+3^3+.....+3^{100}\right)-\left(3+3^2+....+3^{99}\right)\)
\(\Leftrightarrow2B=3^{100}-3\)
\(\Leftrightarrow B=\frac{3^{100}-3}{2}\)
cho mik kết quả bạn nhé