K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 7 2016

\(B=3+\frac{3}{1+2}+\frac{3}{1+2+3}+\frac{3}{1+2+3+4}+...+\frac{3}{1+2+3+4+...+100}\)

\(B=3.\left(\frac{1}{\left(1+0\right).2:2}+\frac{1}{\left(1+2\right).2:2}+\frac{1}{\left(1+3\right).3:2}+\frac{1}{\left(1+4\right).4:2}+...+\frac{1}{\left(1+100\right).100:2}\right)\)

\(B=3.\left(\frac{2}{1.2}+\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{100.101}\right)\)

\(B=6.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{100}-\frac{1}{101}\right)\)

\(B=6.\left(1-\frac{1}{101}\right)\)

\(B=6.\frac{100}{101}=\frac{600}{101}\)

25 tháng 4 2018

                       \(M=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}.\) Nhân với 2 cả hai vế:

được:          \(2M=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}\)  Suy ra :     \(M=2M-M=1-\frac{1}{2^{100}}\)

CHÚC BẠN HỌC GIỎI

18 tháng 3 2018

Đặt \(S=\frac{1}{3}+\frac{2}{3^2}+.......+\frac{101}{3^{101}}\)

\(\Rightarrow3S=1+\frac{2}{3}+.......+\frac{101}{3^{100}}\)

\(\Rightarrow3S-S=\left(1+\frac{2}{3}+..+\frac{101}{3^{100}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+..+\frac{101}{3^{101}}\right)\)

\(\Rightarrow2S=1+\frac{1}{3}+\frac{1}{3^2}+....+\frac{1}{3^{100}}-\frac{101}{3^{101}}< 1+\frac{1}{3}+....+\frac{1}{3^{100}}\)

\(\Rightarrow6S< 3+1+........+\frac{1}{3^{99}}\)

\(\Rightarrow6S-2S< \left(3+1+....+\frac{1}{3^{99}}\right)-\left(1+\frac{1}{3}+....+\frac{1}{3^{100}}\right)\)

\(\Rightarrow4S< 3-\frac{1}{3^{100}}< 3\Rightarrow S< \frac{3}{4}\)

18 tháng 3 2018

Đặt \(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{100}{3^{100}}+\frac{101}{3^{101}}\)

\(3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{100}{3^{99}}+\frac{101}{3^{100}}\)

\(3A-A=\left(1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{101}{3^{100}}\right)-\left(\frac{1}{3}+\frac{2}{3^2}+...+\frac{101}{3^{101}}\right)\)

\(2A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{101}{3^{101}}\)

\(6A=3+1+\frac{1}{3}+...+\frac{1}{3^{99}}-\frac{101}{3^{100}}\)

\(6A-2A=\left(3+1+\frac{1}{3}+...+\frac{1}{3^{99}}-\frac{101}{3^{100}}\right)-\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{100}}-\frac{101}{3^{101}}\right)\)

\(4A=3-\frac{101}{3^{100}}-\frac{1}{3^{100}}+\frac{101}{3^{101}}\)

\(4A=3-\frac{303}{3^{101}}-\frac{3}{3^{101}}+\frac{100}{3^{101}}\)

\(4A=3-\frac{206}{3^{101}}< 3\)

=>\(4A< 3\)

\(\Rightarrow A< \frac{3}{4}\)

2 tháng 1 2019

Tham khảo:Câu hỏi của Mắt Diều Hâu - Toán lớp 5  nhé bạn!

~ HọC tỐt ~ tth ~ 

20 tháng 10 2016

S=30+32+34+36+...+3200

6S=32+34+36+...+3202

6S-S=(32+34+36+...+3202)-(1+32+34+...+3200)

5S=1+(32-32)+(34-34)+...+(3200-3200)+3202

S=(3200+1):5\(\frac{ }{ }\)

Y
28 tháng 3 2019

\(3B=1-\frac{2}{3}+\frac{3}{3^2}-\frac{4}{3^3}+...+\frac{99}{3^{98}}-\frac{100}{3^{99}}\)

\(B=\frac{1}{3}-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+...+\frac{99}{3^{99}}-\frac{100}{3^{100}}\)

\(\Rightarrow4B=3B+B=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

+ Đặt \(M=1-\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{98}}-\frac{1}{3^{99}}\)

\(3M=3-1+\frac{1}{3}-\frac{1}{3^2}+...+\frac{1}{3^{97}}-\frac{1}{3^{98}}\)

\(\Rightarrow4M=3M+M=3-\frac{1}{3^{99}}\)

\(\Rightarrow M=\frac{3}{4}-\frac{1}{3^{99}\cdot4}\)

\(\Rightarrow4B=M-\frac{100}{3^{100}}=\frac{3}{4}-\frac{1}{3^{99}\cdot4}-\frac{100}{3^{100}}\)

\(\Rightarrow B=\frac{3}{16}-\frac{1}{3^{99}\cdot16}-\frac{100}{3^{100}\cdot4}\) \(\Rightarrow B< \frac{3}{16}\)

Y
28 tháng 3 2019

a) \(2A=1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+\frac{1}{2^4}-\frac{1}{2^5}\)

\(A=\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+\frac{1}{2^5}-\frac{1}{2^6}\)

\(\Rightarrow3A=2A+A=1-\frac{1}{2^6}\)

\(\Rightarrow A=\frac{1}{3}-\frac{1}{2^6\cdot3}< \frac{1}{3}\) ( đpcm )

5 tháng 12 2017

A = 1 + ( -2 ) + 3 + ( -4 ) + ....+ ( -98 ) + 99

A = ( 1 + 3 + 5 +.... + 99 ) - ( 2 + 4 + 6 + ... + 98 )

Gọi ( 1 + 3 + 5 +...+ 99 ) là B

      ( 2 + 4 + 6 +...+ 98 ) là C

Ta có :

Khoảng cách giữa các số ở tổng B là 2 . Suy ra :

Số các số hạng của tổng B là :

   ( 99 - 1 ) : 2 + 1 = 50 ( số )

Tổng B là :

   ( 99 + 1 ) x 50 : 2 = 2500

Lại có :

Khoảng cách các số ở tổng C là 2 . Suy ra :

Số các số hạng ở tổng C là :

   ( 98 - 2 ) : 2 + 1 = 49 ( số )

Tổng C là :

   ( 98 + 2 ) x 49 : 2 = 2450

=> A = B - C

=> A = 2500 - 2450

=> A = 50

Vậy A = 50

5 tháng 12 2017

A=1+(-2)+3+(-4)+....+(-98)+99

A=[1+(-2)]+[3+(-4)]+...+[97+(-98)]+99

A=(-1)+(-1)+...+(-1)+99

=> A=(-1).49+99

A=(-49)+99

A=50

B=1+(-4)+7+(-10)+....+97+(-100)+103

B=[1+(-4)]+[7+(-10)]+...+[97+(-100)]+103

B=(-3)+(-3)+...+(-3)+103

=>B=(-3).17+103

B=(-51)+103

B=52

13 tháng 10 2018

\(\frac{101+100+99+98+...+3+2+1}{101-100+99-98+...+3-2+1}\)

\(=\frac{\frac{101.102}{2}}{51}\)

\(=101\)