K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2016

a)(x+2y)2=(x+2y)(x+2y)

=x2+2xy+2xy+4y2

=x2+4xy+4y2

b)(3x-2y)2=(3x-2y)(3x-2y)

=9x2-6xy-6xy+4y2

=9x2-12xy+4y2

c)(2x-1/2)2=(2x-1/2)(2x-1/2)

=4x2-x-(4x-1)/4

=16x2-8x+1/4

d,e làm như c (do mk ko thik lm mấy loại p/s nên bn cố lm)

g)(x-2)(x2+2x+4)=x3+2x2+4x-2x2-4x-8

=x3+(2x2-2x2)+(4x-4x)-8

=x3-8

4 tháng 8 2018

Ik mk nha, hôm nay ngày mai, ngày kia mk ik 3 lần lại cho bạn (thành 9 lần)

Nhớ kb với mìn lun nha!! Mk rất vui đc làm quen vs bạn, cảm ơn mn nhìu lắm

4 tháng 8 2018

a) \(A=x^2-8x+17=\left(x-4\right)^2+1\ge1\)

Vậy MIN A = 1   khi  x = 4

b) \(T=x^2-4x+7=\left(x-2\right)^2+3\ge3\)

Vậy MIN T = 3   khi  x = 2

c)  \(H=3x^2+6x-1=3\left(x+1\right)^2-4\ge-4\) 

Vậy MIN H = -4  khi   x = -1

d)  \(E=x^2+y^2-4\left(x+y\right)+16=\left(x-2\right)^2+\left(y-2\right)^2+8\ge8\)

Vậy MIN E = 8   khi  x = y = 2

e) \(K=4x^2+y^2-4x-2y+3=\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1\)

Vậy MIN  K = 1    khi  x = 1/2;  y = 1

f) \(M=\frac{3}{2}x^2+x+1=\frac{3}{2}\left(x+\frac{1}{3}\right)^2+\frac{5}{6}\ge\frac{5}{6}\)

Vậy MIN   M = 5/6  khi  x = -1/3

1 tháng 10 2017

Ta có : x4 - y4 

= (x2)2 - (y2)2 

= (x2 - y2)(x2 + y2)

= (x - y)(x + y)(x2 + y2)

b) 9(x - y)2 - 4(x + y)2

= [3(x - y) - 4(x + y)][3(x - y) + 4(x + y)]

= [3x - 3y - 4x - 4y][3x - 3y + 4x + 4y]

= (-x - 7y)(x + y) 

1 tháng 10 2017

e.\(x^4+2x^2+1=\left(x^2+1\right)^2\)

c.\(x^2-9y^2=\left(x-3y\right)\left(x+3y\right)\)

f.\(-x^2-2xy-y^2+1=-\left[\left(x+y\right)^2-1\right]=-\left(x+y-1\right)\left(x+y+1\right)=\left(x-y+1\right)\left(x+y+1\right)\)

g.\(x^3-x^2-x+1==x^2\left(x-1\right)-\left(x-1\right)=\left(x-1\right)\left(x^2-1\right)=\left(x-1\right)^2\left(x+1\right)\)

h.\(\left(x+y\right)^2-2\left(x+y\right)+1=\left(x+y-1\right)^2\)

i.\(\left(x+y\right)^3-x^3-y^3=\left(x+y\right)^3-\left(x^3+y^3\right)=\left(x+y\right)^3-\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=\left(x+y\right)\left[\left(x+y\right)^2-\left(x^2-xy+y^2\right)\right]=\left(x+y\right)\left(x^2+2xy+y^2-x^2+xy-y^2\right)\)

\(=3xy\left(x+y\right)\)

tíck mình nha bn thanks !!!!!

30 tháng 8 2020

a) x2( x - 1 ) - x + 1

= x2( x - 1 ) - ( x - 1 )

= ( x - 1 )( x2 - 1 )

= ( x - 1 )( x - 1 )( x + 1 )

= ( x - 1 )2( x + 1 )

b) ( a + b )3 - ( a - b )3

= ( a3 + 3a2b + 3ab2 + b3 ) - ( a3 - 3a2b + 3ab2 - b3 )

= a3 + 3a2b + 3ab2 + b3 - a3 + 3a2b - 3ab2 + b3

= 6a2b + 2b3

= 2b( 3a2 + b )

c) 6x( x - 3 ) + 9 - 3x2

= 6x2 - 18x + 9 - 3x2

= 3x2 - 18x + 9

= 3( x2 - 6x + 3 )

d) x( x - y ) - 5x + 5y

= x( x - y ) - ( 5x - 5y )

= x( x - y ) - 5( x - y )

= ( x - y )( x - 5 )

e) 3( x + 4 ) - x2 - 4x

= 3( x + 4 ) - ( x2 + 4x )

= 3( x + 4 ) - x( x + 4 )

= ( x + 4 )( 3 - x )

f) x2 + 4x - y2 + 4

= ( x2 + 4x + 4 ) - y2

= ( x + 2 )2 - y2

= ( x + 2 - y )( x + 2 + y )

g) x2 + 5x

= x( x + 5 )

h) -x2 + 2x + 2y + y2

= ( y2 - x2 ) + ( 2x + 2y )

= ( y - x )( y + x ) + 2( x + y )

= ( x + y )( y - x + 2 )

3 tháng 9 2016

1 ) Thực hiện phép tính :

a ) \(-\frac{1}{3}xz\left(-9xy+15yz\right)+3x^2\left(2yz^2-yz\right)\)

\(=3x^2yz-5xyz^2+6x^2yz^2-3x^2yz\)

\(=-5xyz^2+6x^2yz^2\)

b ) \(\left(x-2\right)\left(x^2-5x+1\right)-x\left(x^2+11\right)\)

\(=x^3-5x^2-x-2x^2+10x-2-x^3-11x\)

\(=-7x^2-2x-2-x^3\)

c ) \(\left(x^3+5x^2-2x+1\right)\left(x-7\right)\)

\(=x^4+5x^3-2x^2+x-7x^3-35x^2+14x-7\)

\(=x^4-2x^3-37x^2+15x-7\)

d ) \(\left(2x^2-3xy+y^2\right)\left(x+y\right)\)

\(=2x^3-3x^2y+xy^2+2x^2y-3xy^2+y^3\)

\(=2x^3-x^2y-2xy^2+y^3\)

e ) \(\left[\left(x^2-2xy+2y^2\right)\left(x+2y\right)-\left(x^2-4y^2\right)\left(x-y\right)\right]2xy\)

( để xem lại )

2 Tìm x 

a ) \(6x\left(5x+3\right)+3x\left(1-10x\right)=7\)

\(\Leftrightarrow30x^2+18x+3x-30x^2=7\)

\(\Leftrightarrow21x=7\)

\(\Leftrightarrow x=3\)

b ) Sai đề 

c ) \(\left(x+1\right)\left(x+2\right)\left(x+5\right)-x^2\left(x+8\right)=27\)

( Để xem lại )

5 tháng 9 2016

mình chép đúng theo đề cô cho mà sao lại sai được ,hay cô cho sai đề

3 tháng 12 2017

- Viết 7 hằng đẳng thức đáng nhớ :

\(\left(A+B\right)^2=A^2+2AB+B^2\)

\(\left(A-B\right)^2=A^2-2AB+B^2\)

\(A^2-B^2=\left(A-B\right)\left(A+B\right)\)

\(\left(A+B\right)^3=A^3+3A^2B+3AB^2+B^3\)

\(\left(A-B\right)^3=A^3-3A^2B+3AB^2-B^3\)

\(A^3-B^3=\left(A-B\right)\left(A^2+AB+B^2\right)\)

\(A^3+B^3=\left(A+B\right)\left(A^2-AB+B^2\right)\)

- Áp dụng :

\(a,\left(x+2y\right)^2=x^2+4xy+4y^2\)

\(b,\left(\dfrac{5x-1}{2}\right)^2=\dfrac{\left(5x-1\right)^2}{2^2}=\dfrac{25x^2-10x+1}{4}\)

\(c,\left(\dfrac{1}{3x-3}\right)\left(\dfrac{1}{3x+3}\right)=\dfrac{1.1}{\left(3x-3\right)\left(3x+3\right)}=\dfrac{1}{9x^2-9}\)

\(d,\left(2x+3\right)^3=8x^3+36x^2+54x+27\)

\(e,\left(\dfrac{1}{4y-2x}\right)^2=\dfrac{1}{\left(4y-2x\right)^2}=\dfrac{1}{16y^2-16xy+4x^2}\)

\(f,\left(2x-y\right)\left(4x^2+2xy+y^2\right)=\left(2x\right)^3-y^3=8x^3-y^3\)

\(g,\left(x+3\right)\left(x^2-3x+9\right)=x^3+27\)

24 tháng 12 2017

a) (x3 + 8y3) : (2y + x)

= (x + 2y)(x2 - 2xy + 4y2) : (2y + x)

= x2 - 2xy + 4y2

b) (x3 + 3x2y + 3xy2 + y3) : (2x + 2y)

= (x + y)3 : 2(x + y)

= \(\dfrac{\left(x+y\right)^2}{2}\)

c) (6x5y2 - 9x4y3 + 15x3y4) : 3x3y2

= 3x3y2(2x2 - 3xy + 5y2) : 3x3y2

= 2x2 - 3xy + 5y2

28 tháng 7 2019

GIÚP MÌNH VỚI ĐỀ BÀI LÀ RÚT GỌN THÔI NHA THUỘC KIỂU HẰNG ĐẲNG THỨC 6 VÀ 7 GIÚP MÌNH VỚI MÌNH CẦN GẤP TRONG TỐI NAY GIÚP VỚI

28 tháng 7 2019

GIÚP VỚI