\(\sqrt{\frac{196}{169}}\)

b...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2020

a) \(\sqrt{\frac{196}{169}}=\frac{14}{13}\)

b) \(\sqrt{2\frac{14}{25}}=\sqrt{\frac{64}{25}}=\frac{8}{5}\)

c) \(\sqrt{\frac{0,36}{25}}=\frac{0,6}{5}=\frac{3}{25}\)

d) \(\sqrt{\frac{6,4}{4,9}}=\sqrt{\frac{64}{49}}=\frac{8}{7}\)

24 tháng 8 2020

a) \(\sqrt{\frac{196}{169}}=\sqrt{\left(\frac{14}{13}\right)^2}=\frac{14}{13}\)

b) \(\sqrt{2\frac{14}{25}}=\sqrt{\frac{64}{25}}=\sqrt{\left(\frac{8}{5}\right)^2}=\frac{8}{5}\)

c) \(\sqrt{\frac{0,36}{25}}=\sqrt{\left(\frac{0,6}{5}\right)^2}=\frac{0,6}{5}=\frac{6}{50}=\frac{3}{25}\)

d) \(\sqrt{\frac{6,4}{4,9}}=\sqrt{\frac{64}{49}}=\sqrt{\left(\frac{8}{7}\right)^2}=\frac{8}{7}\)

16 tháng 9 2020

tự làm

16 tháng 9 2020

cho anh tao đê

Bài 1:Tính giá trị các biểu thứca)\(\sqrt{9a^2-12a+4}-9a+1\)  Với \(a=\frac{1}{3}\)b)\(\sqrt{4a^4-12a^2+9}-\sqrt{a^4-8a^2+16}\)Với \(a=\sqrt{3}\)c)\(\sqrt{10a^2}-12a\sqrt{10}+36\)Với \(a=\sqrt{\frac{5}{2}}-\sqrt{\frac{2}{5}}\)d)\(\sqrt{16\left(1+4x+4x^2\right)^2}\)Với \(x=-1\)​        Bài 2 : Cho biểu thức \(A=1-\frac{\sqrt{4x^2-4x+1}}{2x-1}\)a) Rút gọn biểu thức Ab) Tính giá trị của biểu thức \(A\)\(khi\)\(x=\frac{1}{3}\)Bài 3 : Cho...
Đọc tiếp

Bài 1:Tính giá trị các biểu thức

a)\(\sqrt{9a^2-12a+4}-9a+1\)  Với \(a=\frac{1}{3}\)

b)\(\sqrt{4a^4-12a^2+9}-\sqrt{a^4-8a^2+16}\)Với \(a=\sqrt{3}\)

c)\(\sqrt{10a^2}-12a\sqrt{10}+36\)Với \(a=\sqrt{\frac{5}{2}}-\sqrt{\frac{2}{5}}\)

d)\(\sqrt{16\left(1+4x+4x^2\right)^2}\)Với \(x=-1\)​        

Bài 2 : Cho biểu thức \(A=1-\frac{\sqrt{4x^2-4x+1}}{2x-1}\)

a) Rút gọn biểu thức A

b) Tính giá trị của biểu thức \(A\)\(khi\)\(x=\frac{1}{3}\)

Bài 3 : Cho biểu thức \(A=\frac{\sqrt{x-1-2\sqrt{x-2}}}{\sqrt{x-2}-1}\)

a) Tìm điều kiện của \(x\)để \(A\)có nghĩa

b) Rút gọn \(A\)

c) Tính \(A\)khi\(x=\sqrt{2013}\)

Bài 4 : Cho biểu thức \(A=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\frac{x-y}{\sqrt{x}-\sqrt{y}}\)

a) Đặt điều kiện để biểu thức \(A\)có nghĩa

b) Rút gọn biểu thức \(A\)

Mấy bạn giúp mình giải với nha, mình đang cần gấp . Mình cảm ơn ạ <3

0

a, \(\left(\sqrt{2006}-\sqrt{2005}\right).\left(\sqrt{2006}+\sqrt{2005}\right)=\left(2006-2005\right)=1\)

25 tháng 6 2019

b.

=\(\frac{7+4\sqrt{3}+14-8\sqrt{3}}{49-48}\left(21+4\sqrt{3}\right)\) 

=\(\left(21-4\sqrt{3}\right)\left(21+4\sqrt{3}\right)\) 

=441-48

393

vậy.......

hc tốt

4 tháng 9 2020

a) \(\sqrt{60}-\sqrt{135}+\frac{1}{3}\sqrt{15}\)

\(=2\sqrt{15}-3\sqrt{15}+\frac{1}{3}\sqrt{15}\)

\(=-\frac{2}{3}\sqrt{15}\)

b) \(\sqrt{28}-\frac{1}{2}\sqrt{343}+2\sqrt{63}\)

\(=2\sqrt{7}-\frac{7}{2}\sqrt{7}+6\sqrt{7}\)

\(=\frac{9}{2}\sqrt{7}\)

c) \(\sqrt{12}-\frac{2}{3}\sqrt{27}+\sqrt{243}\)

\(=2\sqrt{3}-2\sqrt{3}+9\sqrt{3}\)

\(=9\sqrt{3}\)

27 tháng 8 2020

\(a\)

\(\sqrt{2,7}\)\(.\)\(\sqrt{1,2}\)

\(=\)\(\sqrt{2,7.1,2}\)

\(=\)\(\sqrt{3,24}\)

\(=\)\(1,8\)

\(b\)

\(\sqrt{85}.\sqrt{125}.\sqrt{68}\)

\(=\)\(\sqrt{85.125.68}\)

\(=\)\(\sqrt{722500}\)

\(=\)\(850\)

\(c\)

\(\frac{\sqrt{13,5}}{\sqrt{4,5}}\)

\(=\)\(\frac{3,67}{2,12}\)

HỌC TỐT!!!

18 tháng 8 2020

a) \(\sqrt{\frac{3a}{4}}.\sqrt{\frac{4a}{27}}=\frac{\sqrt{3a}}{2}.\frac{\sqrt{4a}}{3\sqrt{3}}=\frac{\sqrt{3}.\sqrt{a}.2.\sqrt{a}}{6\sqrt{3}}=\frac{a.2\sqrt{3}}{6\sqrt{3}}=\frac{a}{3}\)

b) \(\sqrt{15x}.\sqrt{\frac{60}{x}}=\sqrt{15x}.\frac{2\sqrt{15}}{\sqrt{x}}=\frac{30\sqrt{x}}{\sqrt{x}}=30\)

18 tháng 8 2020

a) \(\sqrt{\frac{3a}{4}}.\sqrt{\frac{4a}{27}}=\sqrt{\frac{3a}{4}.\frac{4a}{27}}=\sqrt{\frac{1}{9}.a^2}=\sqrt{\frac{1}{9}}.\sqrt{a^2}=\frac{1}{3}.a\)( Vì \(a\ge0\)nên \(\sqrt{a^2}=\left|a\right|=a\))

b) \(\sqrt{15x}.\sqrt{\frac{60}{x}}=\sqrt{15x.\frac{60}{x}}=\sqrt{900}=30\)

29 tháng 7 2018

a) \(\sqrt{4\left(a-3\right)^2}=\sqrt{2^2\left(a-3\right)^2}=2\sqrt{\left(a-3\right)^2}=2.\left|a-3\right|=2\left(a-3\right)=2a-6\) (Vì \(a\ge3\) )

29 tháng 7 2018

b) \(\sqrt{9\left(b-2\right)^2}=\sqrt{3^2\left(b-2\right)^2}=3\sqrt{\left(b-2\right)^2}=3\left|b-2\right|=3\left(2-b\right)\)

                                                         \(=6-3b\) (vì b < 2 )

b) \(\sqrt{27.48\left(1-a\right)^2}=\sqrt{27.3.16.\left(1-a\right)^2}=\sqrt{81.16.\left(1-a\right)^2}\) 

                                         \(=\sqrt{9^2.4^2.\left(1-a\right)^2}=9.4\sqrt{\left(1-a\right)^2}=36.\left|1-a\right|=36\left(1-a\right)=36-36a\) (vì a > 1)

23 tháng 5 2021

a, Với \(x>0;x\ne1\)

 \(P=\left(\frac{\sqrt{x}}{2}-\frac{1}{2\sqrt{x}}\right)^2\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)\)

\(=\left(\frac{x-1}{2\sqrt{x}}\right)^2\left(\frac{x-2\sqrt{x}+1-x-2\sqrt{x}-1}{x-1}\right)\)

\(=\frac{x^2-2x+1}{4x}.\frac{-4\sqrt{x}}{x-1}=\frac{1-x}{\sqrt{x}}\)

Thay x = 4 => \(\sqrt{x}=2\)vào P ta được : 

\(\frac{1-4}{2}=-\frac{3}{2}\)

c, Ta có : \(P< 0\Rightarrow\frac{1-x}{\sqrt{x}}< 0\Rightarrow1-x< 0\)vì \(\sqrt{x}>0\)

\(\Rightarrow-x< -1\Leftrightarrow x>1\)