Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{2015}-\frac{1}{2016}\)
\(A=\left(1+\frac{1}{3}+\frac{1}{5}+.....+\frac{1}{2015}\right)-\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2016}\right)\)
\(A=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}+\frac{1}{2016}\right)-2\left(\frac{1}{2}+\frac{1}{4}+.....+\frac{1}{2016}\right)\)
\(A=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2015}+\frac{1}{2016}-\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{1008}\right)\)
\(A=\frac{1}{1009}+\frac{1}{1010}+.....+\frac{1}{2016}\)
Khi đó \(\frac{\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{2015}-\frac{1}{2016}\right)}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=\frac{A}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=\frac{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}{\frac{1}{1009}+\frac{1}{1010}+....+\frac{1}{2016}}=1\)
Bạn xem lời giải của mình nhé:
Giải:
Bài 2:
Ta xét A = \(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\)
\(=1+\left(\frac{1}{2}-1\right)+\frac{1}{3}+\left(\frac{1}{4}-\frac{2}{4}\right)+...+\frac{1}{2015}+\left(\frac{1}{2016}-\frac{2}{2016}\right)\\ =1+\frac{1}{2}-1+\frac{1}{3}+\frac{1}{4}-\frac{1}{2}+...+\frac{1}{2015}+\frac{1}{2016}-\frac{1}{1008}\)
\(=\left(1-1\right)+\left(\frac{1}{2}-\frac{1}{2}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+...+\left(\frac{1}{1008}-\frac{1}{1008}\right)+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\)
\(=\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\)
\(\Rightarrow\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\right):\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right)\\ =\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right):\left(\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\right)\\ =1\)
Chúc bạn học tốt!
\(A=\left(\frac{1}{2016}+1\right)+\left(\frac{2}{2015}+1\right)+...+\left(\frac{2015}{2}+1\right)+1\)
= \(\frac{2017}{2016}+\frac{2017}{2015}+\frac{2017}{2014}+...\frac{2017}{2}+\frac{2017}{2017}\)
= \(2017\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}\right)\)
\(\Rightarrow\frac{A}{B}=\frac{2017\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}}\)
= 2017
Chúc bạn học giỏi!
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2015^2}+\frac{1}{2016^2}\)
\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2014.2015}+\frac{1}{2015.2016}\)
\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2014}-\frac{1}{2015}+\frac{1}{2015}-\frac{1}{2016}\)
\(A< 1-\frac{1}{2016}\)
\(A< \frac{2015}{2016}\left(đpcm\right)\)
\(A=\frac{1}{2.2}+\frac{1}{3.3}+.....+\frac{1}{2016.2016}< \frac{1}{1.2}+\frac{1}{2.3}+.....+\frac{1}{2015.2016}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-.....+\frac{1}{2015}-\frac{1}{2016}\)
\(=1-\frac{1}{2016}\)
\(=\frac{2015}{2016}\)
\(\Rightarrow A< \frac{2015}{2016}\)
A = 1 + 1/2 + 1/3 + 1/4 + 1/5 + ... + 1/100
Ta đổi A = 2-1+1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/99-1/100
A= 2 - 1 - 1/100 =200/100 -100/100 - 1/100
A= 99/100
Cảm ơn bạn Kudo Shinichi, nhưng
1=2-1 ->ok
1/2=1-1/2 ->ok
1/3=1/2-1/3 -> sai
vì 1/2-1/3=1/6
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}}{\left(\dfrac{2015}{2}+1\right)+...+\left(\dfrac{2}{2015}+1\right)+\left(\dfrac{1}{2016}+1\right)+1}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}}{\dfrac{2017}{2}+\dfrac{2017}{3}+...+\dfrac{2017}{2015}+\dfrac{2017}{2016}}=\dfrac{1}{2017}\)
Mẫu số = \(\frac{2015}{1}+\frac{2014}{2}+...+\frac{1}{2015}\)
= \(1+1+1+...+1\) ( có tổng cộng 2015 số 1) \(+\frac{2014}{2}+\frac{2013}{3}+...+\frac{1}{2015}\)
= \(\left(1+\frac{2014}{2}\right)+\left(1+\frac{2013}{3}\right)+...+\left(1+\frac{1}{2015}\right)\)
= \(\left(\frac{2}{2}+\frac{2014}{2}\right)+\left(\frac{3}{3}+\frac{2013}{3}\right)+...+\left(\frac{2015}{2015}+\frac{1}{2015}\right)\)
= \(\frac{2016}{2}+\frac{2016}{3}+...+\frac{2016}{2015}\)
= \(2016.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}\right)\)
Tử số= \(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}\)
Lấy tử số chia cho mẫu số:
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}}{2016.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}\right)}\)
Đơn giản mẫu và tử.
\(A=\frac{1}{2016}\)
http://olm.vn/hoi-dap/question/575209.html Bạn tham khảo cách làm của mình ở đây.
Ê bạn sai đề bài rồi đấy...