\(a=\frac{1}{^{1^2}}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+......+\frac{1}{50^2}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2018

(: ko bít. tui giỏi tiếng anh nhưng ngu toán lắm

7 tháng 5 2019

Ta có :

\(\frac{1}{1^2}< \frac{1}{1\cdot2};\frac{1}{2^2}< \frac{1}{2\cdot3};.....;\frac{1}{50^2}< \frac{1}{49\cdot50}\)

\(\Rightarrow\frac{1}{1^2}+\frac{1}{2^2}+...+\frac{1}{50^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{49\cdot50}\)

\(\Rightarrow a< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(\Rightarrow a< 1-\frac{1}{50}=\frac{49}{50}\)

\(a< \frac{49}{50}< 1< 2\)

\(\Rightarrow a< 2\)

thanks bạn rất nhiều

bạn tham khảo ở đây https://olm.vn/hoi-dap/detail/5694735153.html

16 tháng 6 2020

Yêu cầu của bài là gì vậy. Tính A? hay Chứng minh A < 2 hoặc chứng minh A không phải là số nguyên

Chứng minh A < 2

\(A=\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}\)

\(< 1+\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{49.50}\)

\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=2-\frac{1}{50}< 2\)

Vậy A < 2

28 tháng 4 2018

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{50^2}< 1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{49\cdot50}\)

\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}=2-\frac{1}{50}< 2\)

\(\Rightarrow A< 2\)

4 tháng 1 2018

Bạn xem lời giải ở đường link sau nhé:

Câu hỏi của nguyenducminh - Toán lớp 6 - Học toán với OnlineMath

4 tháng 1 2018

A=\(\frac{1}{1^2}\)\(+\frac{1}{2^2}\)\(+\frac{1}{3^2}\)\(+...+\frac{1}{50^2}\)

A<1\(+\frac{1}{1.2}\)\(+\frac{1}{2.3}\)\(+...\frac{1}{49.50}\)

=1+1-\(-\frac{1}{2}\)\(+\frac{1}{2}\)\(-\frac{1}{3}\)\(+...+\frac{1}{49}\)\(-\frac{1}{50}\)

=\(1+1-\frac{1}{50}\)

=\(2-\frac{1}{50}\)\(< 2\)

\(\Rightarrow A< 2\)

10 tháng 5 2017

\(A=1+\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{50^2}.\)

\(A=1+\frac{1}{2\cdot2}+\frac{1}{3\cdot3}+\frac{1}{4\cdot4}+.......+\frac{1}{50\cdot50}\)

\(< 1+\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{49\cdot50}.\)

\(\Rightarrow1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(1+1-\frac{1}{50}< 2\)

=>A<2

ok xong

12 tháng 6 2020

A = \(\frac{1}{1^2}\) + \(\frac{1}{2^2}\) + \(\frac{1}{3^2}\)\(\frac{1}{4^2}\) + .... + \(\frac{1}{50^2}\)

A = 1 + \(\frac{1}{2.2}\)\(\frac{1}{3.3}\)\(\frac{1}{4.4}\)+ ...... + \(\frac{1}{50.50}\)< 1 + \(\frac{1}{1.2}\)\(\frac{1}{2.3}\)\(\frac{1}{3.4}\)+ ...... + \(\frac{1}{49.50}\)

A < 1 + ( 1 - \(\frac{1}{2}\)\(\frac{1}{2}\)\(\frac{1}{3}\)\(\frac{1}{3}\)\(\frac{1}{4}\)+ ...... + \(\frac{1}{49}\)\(\frac{1}{50}\))

A < 1 + ( 1 - \(\frac{1}{50}\))

A < 1 + 1 - \(\frac{1}{50}\)

A < 2 - \(\frac{1}{50}\)

=> A < 2