K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2018

A=[3^2 * (-1/2)^3]^2 A=[9*(-0/5)^3]^2

A=[9*(-0,125)]^2

A=(-1,125)^2

A=1,265625

B= 0,00018/0,0000012

B=15

24 tháng 12 2018

Bạn chỉ rõ ra hơn đc ko

23 tháng 10 2016

Bài 1:

A = 1 + 3 + 32 + ... + 3100

=> 3A = 3 + 32 + ... + 3101

=> 2A = 3101 - 1

=> A = \(\frac{3^{101}-1}{2}\)

B = 1 + 42 + 44 + ... + 4100

=> 8B = 42 + 44 + ... + 4102

=> 7B = 4102 - 1

=> B = \(\frac{4^{102}-1}{7}\)

Bài 2:

a) S1 = 22 + 42 + ... + 202

=> S1 = 22(1+22+...+102)

=> S1 = 22.385

=> S1 = 1540

b) S2 = 1002 + 2002 + ... + 10002

=> S2 = 1002(1+22+...+102)

=> S2 = 1002.385

=> S2 = 3850000

 

27 tháng 7 2021

1. a) M = A + B = x3 - 2x2 + 1 + 2x2 - 1 = x3

b) Thay x = 1/2 vào M => M = (1/2)3 = 1/8

c) Khi M = 0

=> x3 = 0

=> x = 0

2. Sửa đề : B = -x3 + x2

a) M = A + B = x3 - x2 - 2x  + 1 - x3 + x2 = - 2x + 1

b) Thay x = 1 vào M => M = - 2.1 + 1 = -1

c) Để M = 0

=> - 2x + 1 = 0

=> 2x = 1

=> x = 0,5

Vậy x = 0,5 thì M = 0

sorry bn nha mk viết thiếu đề bài 2

B= -x^3 +x^2

19 tháng 11 2018

=BGGGGTT

29 tháng 6 2019

Câu 1 :

\(a,\left(3x+2\right)^2=9x^2+12x+4.\)

\(b,\left(6a^2-b\right)^2=36a^4-12a^2b-b^2\)

\(c,\left(4x-1\right)\left(4x+1\right)=16x^2-1\)

\(d,\left(1-x\right)\left(1+x\right)\left(1+x^2\right)=\left(1-x^2\right)\left(1+x^2\right)=1-x^4\)

\(e,\left(a^2+b^2\right)\left(a^2-b^2\right)=a^4-b^4\)

\(f,\left(x^3+y^2\right)\left(x^3-y^2\right)=x^6-y^4\)

29 tháng 6 2019

Bài 2 :

\(a,A=9x^2+42x+49=9+42+49=100.\)

\(b,B=25x^2-2xy+\frac{1}{25}y^2=\left(5x^2\right)-2.5x.\frac{1}{5}y+\left(\frac{1}{5}y\right)^2\)

\(=\left(5x-\frac{1}{5}y\right)^2=\left(-1+1\right)^2=0\)

\(c,C=4x^2-28x+49=4x^2-14x-14x+49\)

\(=2x\left(x-7\right)-7\left(x-7\right)=\left(2x-7\right)\left(x-7\right)\)

\(=\left(8-7\right)\left(4-7\right)=-3\)

26 tháng 6 2018

\(a,A=2^0+2^1+2^2+....+\)\(2^{2010}\)

\(\Rightarrow2A=2^1+2^2+2^3+....+2^{2011}\)

 \(2A-A=\left(2^1+2^2+2^3+...+2^{2011}\right)-\left(2^0+2^1+2^2+...+2^{2010}\right)\)

  \(A=2^{2011}-2^0\)

\(A=2^{2011}-1\)

\(b,B=1+3+3^2+...+3^{100}\)

\(\Rightarrow3B=3+3^2+3^3+...+3^{101}\)

\(3B-B=\left(3+3^2+3^3+...+3^{101}\right)-\left(1+3+3^2+...+3^{100}\right)\)

\(2B=3^{101}-1\)

\(\Rightarrow B=\frac{3^{101}-1}{2}\)

\(c,C=4+4^2+4^3+...+4^n\)

\(\Rightarrow4C=4^2+4^3+4^4+...+4^{n+1}\)

\(4C-C=\left(4^2+4^3+4^4+...+4^{n+1}\right)-\left(4+4^2+4^3+...+4^n\right)\)

\(3C=4^{n+1}-4\)

\(\Rightarrow C=\frac{4^{n+1}-4}{3}\)

\(d,D=1+5+5^2+...+5^{2000}\)

\(\Rightarrow5D=5+5^2+5^3+...+5^{2001}\)

\(5D-D=\left(5+5^2+5^3+...+5^{2001}\right)-\left(1+5+5^2+...+5^{2000}\right)\)

\(4D=5^{2001}-1\)

\(\Rightarrow D=\frac{5^{2001}-1}{4}\)

21 tháng 3 2021

b)

B=1+3+3^2+3^3+..+3^100

=> 3B = 3 + 3^2 + 3^3 + ...+ 3^101

=> 3B - B = ( 3 + 3^2 + 3^3 + ...+ 3^101) - (1+3+3^2+3^3+..+3^100)

=> 2B = 3^101 - 1

=> B =( 3^101 - 1) / 2