Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 11: Cho tam giác ABC có AB=AC. Gọi M là trung điểm của BC. Chứng minh rằng:
a. AMB = AMC
b. AM là tia phân giác của góc
c. AM ⊥ BC
d. Vẽ At là tia phân giác của góc ngoài ở đỉnh A của Chứng minh:At//BC
Bài 12: Cho tam giác ABC, = 900. Trên BC lấy E sao cho BE = BA. Tia phân giác của góc B cắt AC ở D.
a. Chứng minh Δ ABD = Δ EBD
b. Tính số đo
c. Chứng minh BD ⊥ AE
Bài 13: Cho tam giác ABC, D là trung điểm của AB, E là trung điểm của AC. Vẽ F sao cho E là trung điểm của DF. Chứng minh:
a. ADE = CFE
b. DB = CF
c. AB // CF
d. DE // BC
Bài 14: Cho tam giác ABC có BA<BC. Trên tia BA lấy điểm D sao cho BD = BC.Tia phân giác của góc B cắt AC và DC lần lượt tại E và I.
a. Chứng minh rằng: ΔBEC =Δ BED
b. Chứng minh ID = IC
c. Từ A kẻ AH DC, H. Chứng minh: AH // BI
Bài 15: Cho tam giác ABC. Trên tia đối AB lấy D sao cho AD = AB, trên tia đối AC lấy điểm E sao cho AE = AC.
a. Chứng minh rằng: BE = CD
b. Chứng minh: BE//CD
c. Gọi M là trung điểm của BE và N là trung điểm của CD. Chứng minh:AM = AN
Hình học nha:)C=1+3+32+.............+3100
C=\(\frac{3C-C}{2}\)
3C=3+32+33+.............+399+3100+3101
C=1+3+32+..................+399+3100
3C-C=(3+32+33+.............+399+3100+3101)-(1+3+32+..................+399+3100)
Triệt tiêu các số hạng co giá trị tuyệt đối bằng nhau, ta được:
2C=-1+3100
\(\Rightarrow C=\frac{3^{100}-1}{2}\)
D=\(\frac{2D+D}{3}\)
2D=2101-2100+299-298+..............+23-22
D=2100-299+298-297+............+22-2
2D+D=2101-2100+299-298+..............+23-22+2100-299+298-297+............+22-2
Triệt tiêu các số hạng có giá trị tuyệt đối bằng nhau, ta được:
3D=2101-2
\(\Rightarrow D=\frac{2^{101}-2}{3}\)
B=\(\frac{3}{1\times4}+\frac{5}{4\times9}+\frac{7}{9\times16}+.........+\frac{19}{81\times100}\)
Quan sát biểu thức, ta có nhận xét:
4-1=3;
9-4=5;
16-9=7;
.......;100-81=19
=> Hiệu hai số ở mẫu bằng giá trị ở tử
\(\Rightarrow B=1-\frac{1}{4}+\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{16}+.......+\frac{1}{81}-\frac{1}{100}\)
\(\Rightarrow B=1-\frac{1}{100}\)
\(B=\frac{99}{100}< \frac{100}{100}\)
Vậy B<1
\(a,\left(\frac{3}{7}\right)^{24}:\left(\frac{9}{49}\right)^6\)
\(=\frac{3^{24}}{7^{24}}.\frac{49^6}{9^6}\)
\(=\frac{3^{24}}{7^{24}}.\frac{7^{12}}{3^{12}}\)
\(=\frac{3^{12}}{7^{12}}\)\(=\left(\frac{3}{7}\right)^{12}\)
\(b,3^2.2^5.\left(\frac{2}{3}\right)^2\)
\(=3^2.2^5.\frac{2^2}{9}\)
\(=2^5.2^2\)
\(=2^7\)
\(c,\left(\frac{1}{3}\right)^2.\frac{1}{3}.9^2\)
\(=\left(\frac{1}{3}\right)^3.9^2\)
\(=\frac{1.81}{27}\)
\(=3\)