
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a) A = 3,4 . 10-8 = \(\frac{3,4}{10^{-8}}=\frac{34}{10^{-9}}\)
B = 34 . 10-9 = \(\frac{34}{10^{-9}}\)
A = B
b) \(\frac{A}{B}=\frac{\frac{1}{10^4}+\frac{1}{10^3}+\frac{1}{10^2}}{\frac{1}{10^9}}\)
\(=\left(\frac{1}{10^4}+\frac{1}{10^3}+\frac{1}{10^2}\right).10^9\)
\(=\frac{1+10+10^2}{10^4}.10^9\)
\(=111.10^5\)
=> A = 11100000B

a, \(\frac{2^{15}.\left(-9\right)^4}{-6^3.8^3}=\frac{2^{15}.\left(-3.3\right)^4}{-\left(2.3\right)^3.\left(2^3\right)^3}=\frac{2^{15}.3^4.3^4}{-2^3.3^3.2^9}=\frac{2^{15}.3^8}{-2^{12}.3^3}=\frac{2^3.3^5}{-1}=-8.243=-1944\)
b, \(\frac{8^{10}+4^{10}}{8^4+4^{11}}=\frac{2^{30}+2^{20}}{2^{12}+2^{22}}=\frac{2^{20}\left(2^{10}+1\right)}{2^{12}\left(1+2^{10}\right)}=\frac{2^{20}}{2^{12}}=\frac{1}{2^8}=\frac{1}{256}\)

a)
Ta có \(xy+x^2y^2+x^3y^3+...+x^{10}y^{10}\\ =\left(xy+x^3y^3+x^5y^5+...+x^9y^9\right).\left(x^2y^2+x^4y^4+x^6y^6+...+x^{10}y^{10}\right)\)
Thay x= -1 và y= 1 vào biểu thức trên ta được\(\left(-1\right)1+\left(-1\right)^21^2+...+\left(-1\right)^{10}1^{10}\\ =\left[\left(-1\right)1+\left(-1\right)^31^3+...+\left(-1\right)^91^9\right].\left[\left(-1\right)^21^2+\left(-1\right)^41^4+...+\left(-1\right)^{10}1^{10}\right]\\ =\left(-1-1-...-1\right)+\left(1+1+...+1\right)\\ =-5+5=0\)
b)
Ta có:\(xyz+x^2y^2z^2+x^3y^3z^3+...+x^{10}y^{10}z^{10}\\ =\left(xyz+x^3y^3z^3+x^5y^5z^5+...+x^9y^9z^9\right).\left(x^2y^2z^2+x^4y^4z^4+x^6y^6z^6+...+x^{10}y^{10}z^{10}\right)\)
Thay x=1; y= -1 và z= -1 vào biểu thức trên ta được\(\left(-1\right)\left(-1\right)1+\left(-1\right)^2\left(-1\right)^21^2+...+\left(-1\right)^{10}\left(-1\right)^{10}1^{10}\\ =\left[\left(-1\right)\left(-1\right)1+\left(-1\right)^3\left(-1\right)^31^3+...+\left(-1\right)^9\left(-1\right)^91^9\right].\left[\left(-1\right)^2\left(-1\right)^21^2+\left(-1\right)^4\left(-1\right)^41^4+...+\left(-1\right)^{10}\left(-1\right)^{10}1^{10}\right]\\ =\left(1+1+...+1\right)+\left(1+1+...+1\right)\\ =5+5=10\)
Ta có xy+x2y2+x3y3+...+x10y10=(xy+x3y3+x5y5+...+x9y9).(x2y2+x4y4+x6y6+...+x10y10)xy+x2y2+x3y3+...+x10y10=(xy+x3y3+x5y5+...+x9y9).(x2y2+x4y4+x6y6+...+x10y10)
Thay x= -1 và y= 1 vào biểu thức trên ta được(−1)1+(−1)212+...+(−1)10110=[(−1)1+(−1)313+...+(−1)919].[(−1)212+(−1)414+...+(−1)10110]=(−1−1−...−1)+(1+1+...+1)=−5+5=0(−1)1+(−1)212+...+(−1)10110=[(−1)1+(−1)313+...+(−1)919].[(−1)212+(−1)414+...+(−1)10110]=(−1−1−...−1)+(1+1+...+1)=−5+5=0
b)
Ta có:xyz+x2y2z2+x3y3z3+...+x10y10z10=(xyz+x3y3z3+x5y5z5+...+x9y9z9).(x2y2z2+x4y4z4+x6y6z6+...+x10y10z10)xyz+x2y2z2+x3y3z3+...+x10y10z10=(xyz+x3y3z3+x5y5z5+...+x9y9z9).(x2y2z2+x4y4z4+x6y6z6+...+x10y10z10)
Thay x=1; y= -1 và z= -1 vào biểu thức trên ta được(−1)(−1)1+(−1)2(−1)212+...+(−1)10(−1)10110=[(−1)(−1)1+(−1)3(−1)313+...+(−1)9(−1)919].[(−1)2(−1)212+(−1)4(−1)414+...+(−1)10(−1)10110]=(1+1+...+1)+(1+1+...+1)=5+5=10

a) \(A=\frac{2^4.25^4}{10^5.5^5}=\frac{2^4.\left(5^2\right)^4}{\left(2.5\right)^5.5^5}=\frac{2^4.5^8}{2^5.5^{10}}=\frac{1}{2.5^2}=\frac{1}{50}\)
b) \(B=\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}\)
\(B=\frac{2^{10}.3^8-2^{10}.3^9}{2^{10}.3^8+2^{10}.3^8.5}=\frac{2^{10}.3^8.\left(1-3\right)}{2^{10}.3^8.\left(1+5\right)}=\frac{-2}{6}=\frac{-1}{3}\)
\(A=\frac{2^4.25^4}{10^5.5^5}\)
\(A=\frac{2^4.\left(5^2\right)^4}{\left(2.5\right)^5.5^5}\)
\(A=\frac{2^4.5^8}{2^5.5^5.5^5}\)
\(A=\frac{5^8}{2.5^{10}}\)
\(A=\frac{1}{2.5^2}=\frac{1}{2.25}=\frac{1}{50}\)
\(B=\frac{4^5.9^4-2.6^9}{2^{10}.3^8+6^8.20}\)
\(B=\frac{\left(2^2\right)^5.\left(3^2\right)^4-2.\left(2.3\right)^9}{2^{10}.3^8+\left(2.3\right)^8.2^2.5}\)
\(B=\frac{2^{10}.3^8-2^{10}.2.3^9}{2^{10}.3^8+2^{10}.3^8.5}\)
\(B=\frac{2^{10}.\left(3^8-2.3^9\right)}{2^{10}.\left(3^8+3^8.5\right)}\)
\(\Rightarrow B=\frac{3^8.2.3^9}{3^8+3^8.5}\) ( \(2^{10}\ne0\))
\(B=\frac{3^8.\left(1-2.3\right)}{3^8.\left(1+5\right)}\)
\(B=\frac{1-6}{1+5}\left(3^8\ne0\right)\)
\(B=\frac{-5}{6}\)
Tham khảo nhé~
A= 0,0001 + 0,001 + 0,01 = 0,0111