K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2023

\(a,=\left(\dfrac{1-x}{x}+\dfrac{x^3-x}{x}\right)\times\dfrac{x}{x-1}\\ =\dfrac{1-x+x^3-x}{x}\times\dfrac{x}{x-1}\\ =\dfrac{1-2x+x^3}{x-1}\\ b,=\left(\dfrac{x-x^2}{x.x^2}\right).\dfrac{x^2}{y}+\dfrac{x}{y}\\ =\dfrac{x-x^2}{xy}+\dfrac{x}{y}\\ =\dfrac{x-x^2+x^2}{xy}=\dfrac{x}{xy}=\dfrac{1}{y}\)

\(c,=\dfrac{3}{x}-\dfrac{2}{x}\times x+\dfrac{x}{3}\\ =\dfrac{3}{x}-2+\dfrac{x}{3}\\ =\dfrac{3-2x+x^2}{3x}\)

23 tháng 1 2018

pt nào cho thì mới biết chứ bạn

14 tháng 6 2017

\(\left[\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{2}{x+y}.\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\right]:\dfrac{x^3+y^3}{x^2y^2}-\dfrac{x+y}{x^2-xy+y^2}\)

\(=\left[\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{2}{x+y}.\dfrac{x+y}{xy}\right].\dfrac{x^2y^2}{x^3+y^3}-\dfrac{x+y}{x^2-xy+y^2}\)

\(=\left[\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{2}{xy}\right].\dfrac{x^2y^2}{\left(x+y\right)\left(x^2-xy+y^2\right)}-\dfrac{x+y}{x^2-xy+y^2}\)

\(=\dfrac{y^2+x^2+2xy}{x^2y^2}.\dfrac{x^2y^2}{\left(x+y\right)\left(x^2-xy+y^2\right)}-\dfrac{x+y}{x^2-xy+y^2}\)

\(=\dfrac{\left(x+y\right)^2}{\left(x+y\right)\left(x^2-xy+y^2\right)}-\dfrac{x+y}{x^2-xy+y^2}\)

=\(=\dfrac{x+y}{x^2-xy+y^2}-\dfrac{x+y}{x^2-xy+y^2}=0\)

20 tháng 5 2017

Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\\\sqrt{y}=b\end{matrix}\right.\), ta có:

\(A=\left[\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\times\dfrac{2}{a+b}+\dfrac{1}{a^2}+\dfrac{1}{b^2}\right]\)\(\times\dfrac{a^3+ab^2+a^2b+b^3}{ab^3+a^3b}\)

\(=\left(\dfrac{b+a}{ab}\times\dfrac{2}{a+b}+\dfrac{b^2+a^2}{a^2b^2}\right)\)\(\times\dfrac{a^2\left(a+b\right)+b^2\left(a+b\right)}{ab\left(a^2+b^2\right)}\)

\(=\dfrac{2ab+b^2+a^2}{a^2b^2}\times\dfrac{\left(a+b\right)\left(a^2+b^2\right)}{ab\left(b^2+a^2\right)}\)

\(=\dfrac{\left(a+b\right)^3}{a^3b^3}\)

\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^3}{\sqrt{\left(xy\right)^3}}\)

14 tháng 12 2021

\(a,=\dfrac{\left(x-2\right)^2-\left(x+2\right)^2}{\left(x-2\right)^2\left(x+2\right)^2}:\dfrac{x-2+x+2}{\left(x-2\right)\left(x+2\right)}\\ =\dfrac{-8x}{\left(x-2\right)^2\left(x+2\right)^2}\cdot\dfrac{\left(x-2\right)\left(x+2\right)}{2x}=\dfrac{-4}{\left(x-2\right)\left(x+2\right)}\)

\(b,=\dfrac{5x^2+26xy+5y^2+5x^2-26xy+5y^2}{x\left(x-5y\right)\left(x+5y\right)}\cdot\dfrac{\left(x-5y\right)\left(x+5y\right)}{x^2+y^2}\\ =\dfrac{10\left(x^2+y^2\right)}{x\left(x^2+y^2\right)}=\dfrac{10}{x}\)