\(\frac{\sqrt{7-4\sqrt{3}}}{\sqrt{2}-\sqrt{3}}\)   x  ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2020

a) \(\frac{\sqrt{7-4\sqrt{3}}}{\sqrt{2-\sqrt{3}}}\cdot\sqrt{2+\sqrt{3}}\)

\(=\frac{\sqrt{4-2.2.\sqrt{3}+3}}{\sqrt{2-\sqrt{3}}}\cdot\frac{\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)

\(=\frac{\sqrt{\left(2-\sqrt{3}\right)^2}}{\sqrt{4-2\sqrt{3}}}\cdot\sqrt{\left(1+\sqrt{3}\right)^2}\)

\(=\frac{2-\sqrt{3}}{\sqrt{3}-1}\cdot\left(1+\sqrt{3}\right)\)

\(=\frac{\left(2-\sqrt{3}\right)\left(1+\sqrt{3}\right)^2}{2}\) 

b) \(\sqrt{\frac{3}{20}}+\sqrt{\frac{1}{60}}-2\sqrt{\frac{1}{50}}\)

\(=\sqrt{\frac{1}{10}\cdot\frac{3}{2}}+\sqrt{\frac{1}{10}\cdot\frac{1}{6}}-2\sqrt{\frac{1}{10}\cdot\frac{1}{5}}\)

\(=\sqrt{\frac{1}{10}}\cdot\left(\sqrt{\frac{3}{2}}+\sqrt{\frac{1}{6}}-2\sqrt{\frac{1}{5}}\right)\)

\(=\frac{1}{\sqrt{10}}\cdot\left(\frac{\sqrt{6}}{2}+\frac{\sqrt{6}}{6}-\frac{2\sqrt{5}}{5}\right)\)

\(=\frac{1}{\sqrt{10}}\cdot\left(\frac{15\sqrt{6}+5\sqrt{6}-12\sqrt{5}}{6}\right)\)

\(=\frac{2.\left(5\sqrt{6}-3\sqrt{5}\right)}{3\sqrt{10}}\cdot\)

......

1 tháng 4 2020

a) \(\sqrt{17}-4\) b) \(\sqrt{3}\) c) \(\frac{\sqrt{2}}{2}\) d)\(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) e) \(x-\sqrt{5}\)

f) \(4+2\sqrt{3}\) g) \(3+2\sqrt{2}\) h) \(x+\sqrt{x}+1\) i) \(\frac{3\sqrt{5}-\sqrt{15}}{10}\)

k) \(\sqrt{5}+\sqrt{6}\) i) 5 h) 0 l) \(\sqrt{5}+\sqrt{3}\) m) \(\frac{20\sqrt{3}}{3}\) d) 0

1 tháng 4 2020

ban ơi ccachs làm

22 tháng 7 2017

a, \(\frac{1}{\left(\sqrt{3}+\sqrt{2}\right)^2}\) +\(\frac{1}{\left(\sqrt{3}-\sqrt{2}\right)^2}\) =\(\frac{\left(\sqrt{3}+\sqrt{2}\right)^2+\left(\sqrt{3}-\sqrt{2}\right)^2}{\left(\sqrt{3}+\sqrt{2}\right)^2\left(\sqrt{3}-\sqrt{2}\right)^2}\) 

                                                                         \(=\frac{10}{1}=10\)

mấy câu còn lại bạn tự làm nốt nhé mk ban rồi 

22 tháng 7 2017

Câu bạn trả lời ở đâu v 

6 tháng 7 2019

Em thử nhá, ko chắc đâu

1) \(\frac{2}{\sqrt{20}}=\frac{2\sqrt{20}}{20}\) 2) \(\frac{4}{\sqrt{8}}=\frac{4\sqrt{8}}{8}\)

3) \(\frac{2+\sqrt{3}}{\sqrt{2}}=\frac{2\sqrt{2}+\sqrt{6}}{2}\) 4) \(\frac{1}{\sqrt{6}-2}=\frac{\sqrt{6}+2}{6-4}=\frac{\sqrt{6}+2}{2}\)

5) \(\frac{1}{\sqrt{2}-\sqrt{3}}=\frac{\sqrt{2}+\sqrt{3}}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}=-\left(\sqrt{2}+\sqrt{3}\right)\)

6) \(\frac{9a-b}{3\sqrt{a}-\sqrt{b}}=\frac{\left(9a-b\right)\left(3\sqrt{a}+b\right)}{\left(3\sqrt{a}-\sqrt{b}\right)\left(3\sqrt{a}+\sqrt{b}\right)}=\left(3\sqrt{a}+b\right)\)

7) + 8) em chưa nghĩ ra

6 tháng 7 2019

ong tth :v

\(\frac{2}{\sqrt{20}}=\frac{\sqrt{4}}{\sqrt{4}.\sqrt{5}}=\frac{1}{\sqrt{5}}\)

\(\frac{4}{\sqrt{8}}=\frac{\sqrt{16}}{\sqrt{8}}=\sqrt{2}\)

\(\frac{2+\sqrt{3}}{\sqrt{2}}=\sqrt{2}+\frac{\sqrt{3}}{\sqrt{2}}=\sqrt{2}+\sqrt{1,5}\)

\(\frac{1}{\sqrt{6}-2}=\frac{\sqrt{6}+2}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}=\frac{\sqrt{6}+2}{2}\)

\(\frac{1}{\sqrt{2}-\sqrt{3}}=\frac{\sqrt{3}+\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{2}-\sqrt{3}\right)}=\frac{\sqrt{3}+\sqrt{2}}{-1}=-\sqrt{3}-\sqrt{2}\)

7: chưa

8: chưa

9:\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\left(\sqrt{2}+\sqrt{3}+2\right)+\left(2+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\left(1+\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1+\sqrt{2}\)

a) Ta có:

5√15+12√20+√5515+1220+5

=√52.15+√(12)2.20+√5=√25.15+√14.20+√5=√255+√204+√5=√5+√5+√5=(1+1+1)√5=3√5=52.15+(12)2.20+5=25.15+14.20+5=255+204+5=5+5+5=(1+1+1)5=35

b)  Ta có: 

√12+√4,5+√12,512+4,5+12,5

=√12+√92+√252=√12+√9.12+√25.12=√12+√32.12+√52.12=√12+3√12+5√12=(1+3+5).√12=9√12=91√2=9.√22=9√22=12+92+252=12+9.12+25.12=12+32.12+52.12=12+312+512=(1+3+5).12=912=912=9.22=922

c) Ta có:

√20−√45+3√18+√72=√4.5−√9.5+3√9.2+√36.2=√22.5−√32.5+3√32.2+√62.2=2√5−3√5+3.3√2+6√2=2√5−3√5+9√2+6√2=(2√5−3√5)+(9√2+6√2)=(2−3)√5+(9+6)√2=−√5+15√2=15√2−√520−45+318+72=4.5−9.5+39.2+36.2=22.5−32.5+332.2+62.2=25−35+3.32+62=25−35+92+62=(25−35)+(92+62)=(2−3)5+(9+6)2=−5+152=152−5

d) Ta có:

0,1√200+2√0,08+0,4.√50=0,1√100.2+2√0,04.2+0,4√25.2=0,1√102.2+2√0,22.2+0,4√52.2=0,1.10√2+2.0,2√2+0,4.5√2=1√2+0,4√2+2√2=(1+0,4+2)√2=3,4√2



 

Bạn giải bài đâu vậy? Kiếm điểm hỏi đáp hở, Boy anime?

8 tháng 9 2020

2. a) \(ĐKXĐ:x\ge\frac{1}{3}\)

 \(\sqrt{3x-1}=4\)\(\Rightarrow\left(\sqrt{3x-1}\right)^2=4^2\)

\(\Leftrightarrow3x-1=16\)\(\Leftrightarrow3x=17\)\(\Leftrightarrow x=\frac{17}{3}\)( thỏa mãn ĐKXĐ )

Vậy \(x=\frac{17}{3}\)

b) \(ĐKXĐ:x\ge1\)

\(\sqrt{x-1}=x-1\)\(\Rightarrow\left(\sqrt{x-1}\right)^2=\left(x-1\right)^2\)

\(\Leftrightarrow x-1=x^2-2x+1\)\(\Leftrightarrow x^2-2x+1-x+1=0\)

\(\Leftrightarrow x^2-3x+2=0\)\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)( thỏa mãn ĐKXĐ )

Vậy \(x=1\)hoặc \(x=2\)

3. \(\sqrt{7-2\sqrt{6}}-\sqrt{10-4\sqrt{6}}=\sqrt{6-2\sqrt{6}+1}-\sqrt{6-4\sqrt{6}+4}\)

\(=\sqrt{\left(\sqrt{6}-1\right)^2}-\sqrt{\left(\sqrt{6}-2\right)^2}=\left|\sqrt{6}-1\right|-\left|\sqrt{6}-2\right|\)

Vì \(6>1\)\(\Leftrightarrow\sqrt{6}>\sqrt{1}=1\)\(\Rightarrow\sqrt{6}-1>0\)

\(6>4\)\(\Rightarrow\sqrt{6}>\sqrt{4}=2\)\(\Rightarrow\sqrt{6}-2>0\)

\(\Rightarrow\left|\sqrt{6}-1\right|-\left|\sqrt{6}-2\right|=\left(\sqrt{6}-1\right)-\left(\sqrt{6}-2\right)\)

\(=\sqrt{6}-1-\sqrt{6}+2=1\)

hay \(\sqrt{7-2\sqrt{6}}-\sqrt{10-4\sqrt{6}}=1\)

8 tháng 9 2020

2a) \(\sqrt{3x-1}=4\)( ĐKXĐ : \(x\ge\frac{1}{3}\))

Bình phương hai vế

\(\Leftrightarrow\left(\sqrt{3x-1}\right)^2=4^2\)

\(\Leftrightarrow3x-1=16\)

\(\Leftrightarrow3x=17\)

\(\Leftrightarrow x=\frac{17}{3}\)( tmđk )

Vậy phương trình có nghiệm duy nhất là x = 17/3

b) \(\sqrt{x-1}=x-1\)( ĐKXĐ : \(x\ge1\))

Bình phương hai vế 

\(\Leftrightarrow\left(\sqrt{x-1}\right)^2=\left(x-1\right)^2\)

\(\Leftrightarrow x-1=x^2-2x+1\)

\(\Leftrightarrow x^2-2x+1-x+1=0\)

\(\Leftrightarrow x^2-3x+2=0\)

\(\Leftrightarrow x^2-x-2x+2=0\)

\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}\left(tmđk\right)}\)

Vậy phương trình có hai nghiệm là x = 1 hoặc x = 2

3. \(\sqrt{7-2\sqrt{6}}-\sqrt{10-4\sqrt{6}}\)

\(=\sqrt{6-2\sqrt{6}+1}-\sqrt{6-4\sqrt{6}+4}\)

\(=\sqrt{\left(\sqrt{6}\right)^2-2\cdot\sqrt{6}\cdot1+1^2}-\sqrt{\left(\sqrt{6}\right)^2-2\cdot\sqrt{6}\cdot2+2^2}\)

\(=\sqrt{\left(\sqrt{6}-1\right)^2}-\sqrt{\left(\sqrt{6}-2\right)^2}\)

\(=\left|\sqrt{6}-1\right|-\left|\sqrt{6}-2\right|\)

\(=\sqrt{6}-1-\left(\sqrt{6}-2\right)\)

\(=\sqrt{6}-1-\sqrt{6}+2\)

\(=1\)