Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{7}{4}-\left(\frac{1}{2.2}+\frac{1}{4.3}+\frac{1}{6.4}+\frac{1}{8.5}+\frac{1}{10.6}+\frac{1}{12.7}+\frac{1}{14.8}\right)\div x=0\)
\((\frac{1}{2.2}+\frac{1}{4.3}+\frac{1}{6.4}+\frac{1}{8.5}+\frac{1}{10.6}+\frac{1}{12.7}+\frac{1}{14.8})\div x=\frac{7}{4}\)
\((\frac{1}{4}+\frac{1}{12}+\frac{1}{24}+\frac{1}{40}+\frac{1}{60}+\frac{1}{84}+\frac{1}{112})\div x=\frac{7}{4}\)
\(\left[\frac{1}{2}\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\right)\right]\div x=\frac{7}{4}\)
\(\left[\frac{1}{2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}\right)\right]\div x=\frac{7}{4}\)
\(\left[\frac{1}{2}\left(1-\frac{1}{8}\right)\right]\div x=\frac{7}{4}\)
\(\left(\frac{1}{2}.\frac{7}{8}\right)\div x=\frac{7}{4}\)
\(\frac{7}{16}\div x=\frac{7}{4}\)
\(x=\frac{7}{16}\div\frac{7}{4}\)
\(x=\frac{7}{16}\times\frac{4}{7}\)
\(x=\frac{1}{4}\)
\(\frac{7}{4}-\left(\frac{1}{2\cdot2}+\frac{1}{4\cdot3}+\frac{1}{6\cdot4}+\frac{1}{8\cdot5}+\frac{1}{10\cdot6}+\frac{1}{12\cdot7}+\frac{1}{14\cdot8}\right)\)
\(=\frac{7}{4}-\left(\frac{1}{4}+\frac{1}{12}+\frac{1}{24}+\frac{1}{40}+\frac{1}{60}+\frac{1}{84}+\frac{1}{112}\right)\)
\(=\frac{7}{4}-\frac{1}{2}\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}\right)\)
\(=\frac{7}{4}-\frac{1}{2}\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}\right)\)
\(=\frac{7}{4}-\frac{1}{2}\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}\right)\)
\(=\frac{7}{4}-\frac{1}{2}\left(1-\frac{1}{8}\right)\)
\(=\frac{7}{4}-\frac{1}{2}\cdot\frac{7}{8}\)
\(=\frac{7}{4}-\frac{7}{16}=\frac{28}{16}-\frac{7}{16}=\frac{21}{16}\)
\(a,A=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-..-\frac{1}{3.2}-\frac{1}{2.1}\)
\(A=\frac{1}{100}-\left(\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\right)\)
\(A=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(A=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(A=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
\(A=\frac{1}{100}-1+\frac{1}{100}\)
\(A=\frac{2}{100}-1\)
\(A=\frac{1}{50}-1\)
\(A=\frac{-49}{50}\)
b,\(2.2^2+3.2^3+4.2^4+...+\left(n-1\right).2^{n-1}+n.2^n=2^{n+34}\) (1)
Đặt \(B=2.2^2+3.2^3+4.2^4+...+\left(n-1\right).2^{n-1}+n.2^n\)
\(\Rightarrow2B=2.\left(2.2^2+3.2^3+4.2^4+...+\left(n-1\right).2^{n-1}+n.2^n\right)\)
\(=2.2^3+3.2^4+4.2^5+...+\left(n-1\right).2^n+n.2^{n+1}\)
\(2B-B=\left(2.2^3+3.2^4+4.2^5+..+\left(n-1\right).2^n+n.2^{n+1}\right)\)
\(=(2.2^2+3.2^3+4.2^4+...+\left(n-1\right).2^{n-1}+n.2^n)\)
\(B=-2^3-2^4-2^5-...-2^{n+1}-2.2^2\)
\(=-\left(2^3+2^4+2^5+...+2^n\right)+n.2^{n+1}-2^3\)
Đặt \(C=2^3+2^4+2^5+2^n\)
\(\Rightarrow2C=2.(2^3+2^4+2^5+...+2^n)\)
\(C=2^4+2^5+2^6+...+2^{n+1}\)
\(2C-C=\left(2^4+2^5+2^6+...+2^{n+1}\right)-\left(2^3+2^4+2^5+...+2^n\right)\)
\(C=2^{n+1}-2^3\)
Khi đó : \(B=-(2^{n+1}-2^3)+n.2^{n+1}-2^3\)
\(=-2^{n+1}+2^3+n.2^{n+1}-2^3\)
=\(=-2^{n+1}+n.2^{n+1}=\left(n-1\right).2^{n-1}\)
Vậy từ (1) ta có:\(\left(n-1\right),2^{n+1}=2^{n+34}\)
\(2^{n+34}-\left(n-1\right).2^{n+1}=0\)
\(2^{n+1}.[2^{33}-\left(n-1\right)]=0\)
Do đó \(2^{33}-n+1=0\)( Vì \(2^{n+1}\ne0\)với mọi \(n\))
\(n=2^{33}+1\)
Vậy \(n=2^{33}+1\)
\(A=\frac{\left(1+2+...+100\right)\left(\frac{1}{2}^2-...-\frac{1}{5}\right)\left(2,4.42-21.4,8\right)}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}\)
=> \(A=\frac{\left(1+2+...+100\right)\left(\frac{1}{2}-...-\frac{1}{5}\right).0}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}\)= 0
Đặt \(A=\frac{1}{50.48}-\frac{1}{48.46}-...-\frac{1}{4.2}\) ta có :
\(A=\frac{1}{48.50}-\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{46.48}\right)\) ( xắp sếp lại cho đẹp đội hình thôi :)
Đặt \(B=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{46.48}\) ta có :
\(2B=\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{46.48}\)
\(2B=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{46}-\frac{1}{48}\)
\(2B=\frac{1}{2}-\frac{1}{48}\)
\(2B=\frac{23}{48}\)
\(B=\frac{23}{48}:2\)
\(B=\frac{23}{48}.\frac{1}{2}\)
\(B=\frac{23}{96}\)
\(\Rightarrow\)\(A=\frac{1}{48.50}-B=\frac{1}{48.50}-\frac{23}{96}=\frac{1}{2400}-\frac{23}{96}=\frac{-287}{1200}\)
Vậy \(A=\frac{-287}{1200}\)
Chúc bạn học tốt ~
1) \(+2x+3y⋮17\)
\(\Rightarrow26x+39y⋮17\)
\(\Rightarrow\left(9x+5y\right)+17x+34y⋮17\)
Mà \(17x+34y⋮17\)
\(\Rightarrow9x+5y⋮17\)
\(+9x+5y⋮17\)
\(\Rightarrow36x+20y⋮17\)
\(\Rightarrow\left(2x+3y\right)+34x+17y⋮17\)
Mà \(34x+17y⋮17\)
\(\Rightarrow2x+3y⋮17\)
b) \(=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{9}+\frac{1}{9}-\frac{1}{14}+\frac{1}{14}-\frac{1}{19}+...+\frac{1}{44}-\frac{1}{49}\right)\frac{2-\left(1+3+5+7+..+49\right)}{12}\)
\(=\frac{1}{5}\left(\frac{1}{4}-\frac{1}{49}\right)\frac{2-\left(12.50+25\right)}{89}=-\frac{5.9.7.89}{5.4.7.7.89}=\frac{-9}{28}\)
\(A=\frac{1}{100}-\frac{1}{100.98}-\frac{1}{98.96}-....-\frac{1}{6.4}-\frac{1}{4.2}\)
\(\Rightarrow A=\frac{1}{100}-\left(\frac{1}{100.98}+\frac{1}{98.96}+....+\frac{1}{6.4}+\frac{1}{4.2}\right)\)
\(\Rightarrow A=\frac{1}{100}-\left(\frac{1}{100}-\frac{1}{98}+\frac{1}{98}-\frac{1}{96}+.....+\frac{1}{6}-\frac{1}{4}+\frac{1}{4}-\frac{1}{2}\right)\)
\(\Rightarrow A=\frac{1}{100}-\left(\frac{1}{100}-\frac{1}{2}\right)\Rightarrow A=\frac{1}{100}-\frac{1}{100}+\frac{1}{2}\Rightarrow A=\frac{1}{2}\)
\(A=\frac{1}{100}-\frac{1}{100.98}-\frac{1}{98.96}-...-\frac{1}{6.4}-\frac{1}{4.2}\)
\(A=\frac{1}{100}-\left(\frac{1}{2.4}+\frac{1}{4.6}+...+\frac{1}{96.98}+\frac{1}{98.100}\right)\)
\(A=\frac{1}{100}-\frac{1}{2.2}.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{48.49}+\frac{1}{49.50}\right)\)
\(A=\frac{1}{100}-\frac{1}{4}.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{48}-\frac{1}{49}+\frac{1}{49}-\frac{1}{50}\right)\)
\(A=\frac{1}{100}-\frac{1}{4}.\left(1-\frac{1}{50}\right)\)
\(A=\frac{1}{100}-\frac{1}{4}.\frac{49}{50}\)
\(A=\frac{2}{200}-\frac{49}{200}=-\frac{47}{200}\)