Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\dfrac{11}{22}-\dfrac{3}{16}.\dfrac{8}{18}+\dfrac{1}{18}=\dfrac{1}{2}-\dfrac{1}{12}+\dfrac{1}{18}=\dfrac{18}{36}-\dfrac{3}{36}+\dfrac{2}{36}=\dfrac{17}{36}\)
\(b,\dfrac{5}{7}+\dfrac{3}{7}:4-\dfrac{8}{9}.\dfrac{-3}{4}=\dfrac{5}{7}+\dfrac{3}{7}.\dfrac{1}{4}-\dfrac{-2}{3}=\dfrac{5}{7}+\dfrac{3}{28}+\dfrac{2}{3}=\dfrac{60}{84}+\dfrac{9}{84}+\dfrac{56}{84}=\dfrac{125}{84}\)
3.a)\(\dfrac{-1}{2}+\dfrac{5}{6}+\dfrac{1}{3}=\dfrac{-3}{6}+\dfrac{5}{6}+\dfrac{2}{6}=\dfrac{-3+5+2}{6}=\dfrac{4}{6}=\dfrac{2}{3}\)
b)\(\dfrac{-3}{8}+\dfrac{7}{4}-\dfrac{1}{12}=\dfrac{-9}{24}+\dfrac{42}{24}-\dfrac{2}{24}=\dfrac{-9+42-2}{24}=\dfrac{31}{24}\)
c)\(\dfrac{3}{5}:\left(\dfrac{1}{4}.\dfrac{7}{5}\right)=\dfrac{3}{5}:\dfrac{7}{20}=\dfrac{3}{5}.\dfrac{20}{7}=\dfrac{12}{7}\)
d)\(\dfrac{10}{11}+\dfrac{4}{11}:4-\dfrac{1}{8}=\dfrac{10}{11}+\dfrac{4}{11}.\dfrac{1}{4}-\dfrac{1}{8}=\dfrac{10}{11}+\dfrac{1}{11}-\dfrac{1}{8}=1-\dfrac{1}{8}=\dfrac{8}{8}-\dfrac{1}{8}=\dfrac{7}{8}\)
\(M=\dfrac{8}{3}\cdot\dfrac{2}{5}\cdot\dfrac{3}{8}\cdot10\cdot\dfrac{19}{92}\\ =\dfrac{8\cdot2\cdot3\cdot10\cdot19}{3\cdot5\cdot8\cdot92}\\ =\dfrac{8\cdot2\cdot3\cdot2\cdot5\cdot19}{3\cdot5\cdot8\cdot2\cdot2\cdot23}\\ =\dfrac{19}{23}\)
\(N=\dfrac{5}{7}\cdot\dfrac{5}{11}+\dfrac{5}{7}\cdot\dfrac{2}{11}-\dfrac{5}{7}\cdot\dfrac{14}{11}\\ =\dfrac{5}{7}\cdot\left(\dfrac{5}{11}+\dfrac{2}{11}-\dfrac{14}{11}\right)\\ =\dfrac{5}{7}\cdot\left(-\dfrac{7}{11}\right)\\ =-\dfrac{5}{11}\)
\(Q=\left(\dfrac{1}{99}+\dfrac{12}{999}-\dfrac{123}{9999}\right)\cdot\left(\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{1}{6}\right)\\ =\left(\dfrac{1}{99}+\dfrac{12}{999}-\dfrac{123}{9999}\right)\cdot\left(\dfrac{3}{6}-\dfrac{2}{6}-\dfrac{1}{6}\right)\\ =\left(\dfrac{1}{99}+\dfrac{12}{999}-\dfrac{123}{9999}\right)\cdot\left(\dfrac{1}{6}-\dfrac{1}{6}\right)\\ =\left(\dfrac{1}{99}+\dfrac{12}{999}-\dfrac{123}{9999}\right)\cdot0\\ =0\)
\(A=15.\left(\dfrac{3}{5}-\dfrac{2}{3}\right)+1\\ A=15.\left(\dfrac{9}{15}-\dfrac{10}{15}\right)+1\\ A=15.\dfrac{-1}{15}+1\\ A=-1+1\\ A=0\)
\(C=\dfrac{-5}{7}.\dfrac{2}{11}+\dfrac{-5}{7}.\dfrac{9}{11}+1\dfrac{5}{7}\\ C=\dfrac{-5}{7}.\dfrac{2}{11}+\dfrac{-5}{9}.\dfrac{9}{11}+\dfrac{12}{7}\\ C=\dfrac{-5}{7}.\left(\dfrac{2}{11}+\dfrac{9}{11}\right)+\dfrac{12}{7}\\ C=\dfrac{-5}{7}.1+\dfrac{12}{7}\\ C=\dfrac{-5}{7}+\dfrac{12}{7}\\ C=1\)
a) \(\dfrac{-3}{7}+\dfrac{15}{26}-\left(\dfrac{2}{13}-\dfrac{3}{7}\right)\\ =\dfrac{-3}{7}+\dfrac{15}{26}-\dfrac{2}{13}+\dfrac{3}{7}\\ =\left(\dfrac{-3}{7}+\dfrac{3}{7}\right)+\left(\dfrac{15}{26}-\dfrac{2}{13}\right)\\ =0+\left(\dfrac{15}{26}-\dfrac{4}{26}\right)\\ =0+\dfrac{11}{26}\\ =\dfrac{11}{26}\)
\(c)\dfrac{-11}{23}.\dfrac{6}{7}+\dfrac{8}{7}.\dfrac{-11}{23}-\dfrac{1}{23}\\=\dfrac{-1}{23}\left ( \dfrac{66}{7}+\dfrac{88}{7}+1 \right )\\ =\dfrac{-1}{23}.23=-1\)
f: \(=\dfrac{7}{19}\left(\dfrac{8}{11}+\dfrac{3}{11}\right)-\dfrac{12}{19}=\dfrac{7}{19}-\dfrac{12}{19}=\dfrac{-5}{19}\)
i: \(=\left(\dfrac{9}{24}-\dfrac{18}{24}+\dfrac{14}{24}\right)\cdot\dfrac{6}{5}+\dfrac{1}{2}=\dfrac{5}{24}\cdot\dfrac{6}{5}+\dfrac{1}{2}\)
=1/4+1/2=3/4
` 7/19 . 8/11 + 3/11 . 7/19 + (-12)/19 `
`= 7/19 . ( 8/11 + 3/11 ) + (-12)/19 `
`= 7/19 . 11/11 + (-12)/19`
`= 7/19 . 1 + (-12)/19 `
`= 7/19 + (-12)/19 `
`= -5/19 `
`( 3/8 + (-3)/4 + 7/12 ) : 5/6 + 1/2`
`= 3/8 + (-3)4 + 7/12 . 6/5 + 1/2`
`= ( 9+(-18) + 14)/24 . 6/5 + 1/2`
`= 5/24 . 6/5 + 1/2`
`= 1/4 + 1/2 `
`= 3/4`
a) \(\dfrac{7}{8} + \dfrac{7}{8}:\dfrac{1}{8} - \dfrac{1}{2}\)
\(\begin{array}{l} = \dfrac{7}{8} + \dfrac{7}{8}.8 - \dfrac{1}{2}\\ = \dfrac{7}{8}.1 + \dfrac{7}{8}.8 - \dfrac{1}{2}\\ = \left( {\dfrac{7}{8}.1 + \dfrac{7}{8}.8} \right) - \dfrac{1}{2}\\ = \dfrac{7}{8}.\left( {1 + 8} \right) - \dfrac{1}{2} = \dfrac{7}{8}.9 - \dfrac{1}{2}\\ = \dfrac{{63}}{8} - \dfrac{1}{2} = \dfrac{{63}}{8} - \dfrac{4}{8} = \dfrac{{63 - 4}}{8} = \dfrac{{59}}{8}\end{array}\)
b) \(\dfrac{6}{{11}} + \dfrac{{11}}{3}.\dfrac{3}{{22}}\)
\(\begin{array}{l} = \dfrac{6}{{11}} + \dfrac{{11.3}}{{3.22}} = \dfrac{6}{{11}} + \dfrac{1}{2}\\ = \dfrac{{12}}{{22}} + \dfrac{{11}}{{22}} = \dfrac{{12 + 11}}{{22}} = \dfrac{{23}}{{22}}\end{array}\)