Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, = \(\frac{\sqrt{7}-5}{2}-\frac{2\left(3-\sqrt{7}\right)}{4}+\frac{6\left(\sqrt{7}+2\right)}{\left(\sqrt{7}-2\right)\left(\sqrt{7}+2\right)}-\frac{5\left(4-\sqrt{7}\right)}{\left(4-\sqrt{7}\right)\left(4+\sqrt{7}\right)}\)
2. a) \(ĐKXĐ:x\ge\frac{1}{3}\)
\(\sqrt{3x-1}=4\)\(\Rightarrow\left(\sqrt{3x-1}\right)^2=4^2\)
\(\Leftrightarrow3x-1=16\)\(\Leftrightarrow3x=17\)\(\Leftrightarrow x=\frac{17}{3}\)( thỏa mãn ĐKXĐ )
Vậy \(x=\frac{17}{3}\)
b) \(ĐKXĐ:x\ge1\)
\(\sqrt{x-1}=x-1\)\(\Rightarrow\left(\sqrt{x-1}\right)^2=\left(x-1\right)^2\)
\(\Leftrightarrow x-1=x^2-2x+1\)\(\Leftrightarrow x^2-2x+1-x+1=0\)
\(\Leftrightarrow x^2-3x+2=0\)\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)( thỏa mãn ĐKXĐ )
Vậy \(x=1\)hoặc \(x=2\)
3. \(\sqrt{7-2\sqrt{6}}-\sqrt{10-4\sqrt{6}}=\sqrt{6-2\sqrt{6}+1}-\sqrt{6-4\sqrt{6}+4}\)
\(=\sqrt{\left(\sqrt{6}-1\right)^2}-\sqrt{\left(\sqrt{6}-2\right)^2}=\left|\sqrt{6}-1\right|-\left|\sqrt{6}-2\right|\)
Vì \(6>1\)\(\Leftrightarrow\sqrt{6}>\sqrt{1}=1\)\(\Rightarrow\sqrt{6}-1>0\)
\(6>4\)\(\Rightarrow\sqrt{6}>\sqrt{4}=2\)\(\Rightarrow\sqrt{6}-2>0\)
\(\Rightarrow\left|\sqrt{6}-1\right|-\left|\sqrt{6}-2\right|=\left(\sqrt{6}-1\right)-\left(\sqrt{6}-2\right)\)
\(=\sqrt{6}-1-\sqrt{6}+2=1\)
hay \(\sqrt{7-2\sqrt{6}}-\sqrt{10-4\sqrt{6}}=1\)
2a) \(\sqrt{3x-1}=4\)( ĐKXĐ : \(x\ge\frac{1}{3}\))
Bình phương hai vế
\(\Leftrightarrow\left(\sqrt{3x-1}\right)^2=4^2\)
\(\Leftrightarrow3x-1=16\)
\(\Leftrightarrow3x=17\)
\(\Leftrightarrow x=\frac{17}{3}\)( tmđk )
Vậy phương trình có nghiệm duy nhất là x = 17/3
b) \(\sqrt{x-1}=x-1\)( ĐKXĐ : \(x\ge1\))
Bình phương hai vế
\(\Leftrightarrow\left(\sqrt{x-1}\right)^2=\left(x-1\right)^2\)
\(\Leftrightarrow x-1=x^2-2x+1\)
\(\Leftrightarrow x^2-2x+1-x+1=0\)
\(\Leftrightarrow x^2-3x+2=0\)
\(\Leftrightarrow x^2-x-2x+2=0\)
\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}\left(tmđk\right)}\)
Vậy phương trình có hai nghiệm là x = 1 hoặc x = 2
3. \(\sqrt{7-2\sqrt{6}}-\sqrt{10-4\sqrt{6}}\)
\(=\sqrt{6-2\sqrt{6}+1}-\sqrt{6-4\sqrt{6}+4}\)
\(=\sqrt{\left(\sqrt{6}\right)^2-2\cdot\sqrt{6}\cdot1+1^2}-\sqrt{\left(\sqrt{6}\right)^2-2\cdot\sqrt{6}\cdot2+2^2}\)
\(=\sqrt{\left(\sqrt{6}-1\right)^2}-\sqrt{\left(\sqrt{6}-2\right)^2}\)
\(=\left|\sqrt{6}-1\right|-\left|\sqrt{6}-2\right|\)
\(=\sqrt{6}-1-\left(\sqrt{6}-2\right)\)
\(=\sqrt{6}-1-\sqrt{6}+2\)
\(=1\)
Em thử nhá, ko chắc đâu
1) \(\frac{2}{\sqrt{20}}=\frac{2\sqrt{20}}{20}\) 2) \(\frac{4}{\sqrt{8}}=\frac{4\sqrt{8}}{8}\)
3) \(\frac{2+\sqrt{3}}{\sqrt{2}}=\frac{2\sqrt{2}+\sqrt{6}}{2}\) 4) \(\frac{1}{\sqrt{6}-2}=\frac{\sqrt{6}+2}{6-4}=\frac{\sqrt{6}+2}{2}\)
5) \(\frac{1}{\sqrt{2}-\sqrt{3}}=\frac{\sqrt{2}+\sqrt{3}}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}=-\left(\sqrt{2}+\sqrt{3}\right)\)
6) \(\frac{9a-b}{3\sqrt{a}-\sqrt{b}}=\frac{\left(9a-b\right)\left(3\sqrt{a}+b\right)}{\left(3\sqrt{a}-\sqrt{b}\right)\left(3\sqrt{a}+\sqrt{b}\right)}=\left(3\sqrt{a}+b\right)\)
7) + 8) em chưa nghĩ ra
ong tth :v
\(\frac{2}{\sqrt{20}}=\frac{\sqrt{4}}{\sqrt{4}.\sqrt{5}}=\frac{1}{\sqrt{5}}\)
\(\frac{4}{\sqrt{8}}=\frac{\sqrt{16}}{\sqrt{8}}=\sqrt{2}\)
\(\frac{2+\sqrt{3}}{\sqrt{2}}=\sqrt{2}+\frac{\sqrt{3}}{\sqrt{2}}=\sqrt{2}+\sqrt{1,5}\)
\(\frac{1}{\sqrt{6}-2}=\frac{\sqrt{6}+2}{\left(\sqrt{6}-2\right)\left(\sqrt{6}+2\right)}=\frac{\sqrt{6}+2}{2}\)
\(\frac{1}{\sqrt{2}-\sqrt{3}}=\frac{\sqrt{3}+\sqrt{2}}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{2}-\sqrt{3}\right)}=\frac{\sqrt{3}+\sqrt{2}}{-1}=-\sqrt{3}-\sqrt{2}\)
7: chưa
8: chưa
9:\(\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\left(\sqrt{2}+\sqrt{3}+2\right)+\left(2+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\left(\sqrt{4}+\sqrt{6}+\sqrt{8}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=\frac{\left(1+\sqrt{2}\right)\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}=1+\sqrt{2}\)
\(a,\frac{6}{4+\sqrt{4-2\sqrt{3}}}=\frac{6}{4+\sqrt{\sqrt{3}^2-2\sqrt{3}+\sqrt{1}^2}}\)
\(=\frac{6}{4+\sqrt{\left(\sqrt{3}-\sqrt{1}\right)^2}}=\frac{6}{4+|\sqrt{3}-1|}=\frac{6}{3+\sqrt{3}}\)
\(=\frac{6}{\sqrt{3}\left(\sqrt{3}+1\right)}=\frac{\sqrt{36}}{\sqrt{3}\left(\sqrt{3}+1\right)}=\frac{\sqrt{3}.\sqrt{12}}{\sqrt{3}\left(\sqrt{3}+1\right)}=\frac{\sqrt{12}}{\sqrt{3}+1}\)
\(d,\frac{1}{\sqrt{7-2\sqrt{10}}}+\frac{1}{\sqrt{7+2\sqrt{10}}}\)
\(=\frac{1}{\sqrt{\sqrt{5}^2-2.\sqrt{2}.\sqrt{5}+\sqrt{2}^2}}+\frac{1}{\sqrt{\sqrt{5}^2+2.\sqrt{2}.\sqrt{5}+\sqrt{2}^2}}\)
\(=\frac{1}{\sqrt{\left(\sqrt{5}-\sqrt{2}\right)}}+\frac{1}{\sqrt{\left(\sqrt{5}+\sqrt{2}\right)^2}}\)
\(=\frac{1}{\sqrt{5}-\sqrt{2}}+\frac{1}{\sqrt{5}+\sqrt{2}}=\frac{\sqrt{5}+\sqrt{2}+\sqrt{5}-\sqrt{2}}{\left(\sqrt{5}-\sqrt{2}\right)\left(\sqrt{5}+\sqrt{2}\right)}\)
\(=\frac{2\sqrt{5}}{\sqrt{5}^2-\sqrt{2}^2}=\frac{\sqrt{5.4}}{5-2}=\frac{\sqrt{20}}{3}\)
a,
\(\frac{\sqrt{6}\left(\sqrt{3}-1\right)}{\sqrt{3}\left(\sqrt{3}-1\right)}+\sqrt{\frac{\left(2-\sqrt{2}\right)^2}{\left(2+\sqrt{2}\right).\left(2-\sqrt{2}\right)}}\)
=\(\sqrt{2}+\frac{2-\sqrt{2}}{\sqrt{2}}\)
=\(\sqrt{2}+\frac{\sqrt{2}\left(\sqrt{2}-1\right)}{\sqrt{2}}\)
=\(\sqrt{2}+\sqrt{2}-1\)
=\(2\sqrt{2}-1\)
còn tiếp
b=,\(\frac{6\sqrt{3}}{3}-\frac{\sqrt{3}\left(1-\sqrt{3}\right)}{\sqrt{3}}-\frac{\sqrt{6}\left(\sqrt{2}-\sqrt{3}\right)}{\sqrt{2}-\sqrt{3}}\)
=\(6-1+\sqrt{3}-\sqrt{6}\)
=\(5+\sqrt{3}+\sqrt{6}\)
Mình chỉ biến đổi mấy cái căn chồng căn theo nhá:
\(\sqrt{5-2\sqrt{6}}=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}=\sqrt{3}-\sqrt{2}\)
\(\sqrt{7-4\sqrt{3}}=\sqrt{\left(2-\sqrt{3}\right)^2}=2-\sqrt{3}\)
\(\sqrt{2+\sqrt{3}}=\frac{\sqrt{\left(\sqrt{3}+1\right)^2}}{\sqrt{2}}=\frac{\sqrt{3}+1}{\sqrt{2}}\)