K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2017

a) A = 2 + 22 + 23 + ... + 210

2A = 22 + 23 + 24 + ... + 211

2A - A = ( 22 + 23 + 24 + ... + 211 ) - ( 2 + 22 + 23 + ... + 210 )

A = 211 - 2

21 tháng 6 2019

1,

a) 1^3 + 2^3 + ... + 10^3 = ( x+1) ^2

   ( 1+2+3+4+5+...+10 ) ^ 2 = ( x+1) ^2 

   \(\left(\frac{10\times11}{2}\right)^2\)= ( x + 1 ) ^2

     55^2 = ( x+1 ) ^2 

    => x+1= 55 hoặc x + 1 = -55

         x = 54            x = -56

      Vậy : x = 54 hoặc x = -56

b,   1+3+5+...+99 = ( x-2 )^2

     Đặt 1+3+5+...+99 là : A

     => Số các số hạng của A là : ( 99-1 ) : 2 + 1 = 50

     => A = ( 1+99 ) x 50 :2

          A = 2500

    Ta có : 2500 = ( x-2)^2

   => (x-2)^2 = 50^2 hoặc (x-2)^2 = (-50)^2

   =>  x-2=50                   x - 2 = -50

         x = 52                    x = -48

Vậy : x = 52 hoặc x = -48

2, 

 a)A = 2^0 + 2^1 + 2^2 + ...+2^2006

    2A = 2^1 + 2^2 + ... + 2^2007

    2A - A = ( 2^1 + 2^2 + ... + 2^2007 ) - ( 2^0 + 2^1 + ... + 2^2006 )

     A = 2^2007 - 2^0

    A = 2^2007 - 1 

Phần b Nhân với 3 làm tương tự

Phần c nhân với 4 lm tương tự

Phần d nhân với 5 làm tương tự

< Chúc bn hok tốt > nhớ k cho mik nhé

21 tháng 6 2019

b1:

a)=3(1+2+3+4+5+6+7+8+9+10)

=3.55

=165

b)ta xét vế 1:

số các số hạng ở vế 1 là :(99-1):2+1=50 số

tổng số các số hạng ở vế 1 là:(1+99).(50:2)=250

ta có:(x-2).2=250

x-2=250:2

x-2=125

x=127

b2:

A=2(0+1+2+...+2006)

A=2 {[(2006+1):2].(2006+0)}

A=2(1004+(1003.2006))

A=4014044

B=3(1+2+3+...+100)

B=3((100:2).(100+1))

B=3.5050

B=15150

C=4(1+2+...+n)

C=4k(chứ ts đây mik chịu,thông cảm bn nhé!)

D=5(1+2+...+2000)

D=5((2000:2).(2000+1))

D=10005000

17 tháng 1 2022

Bài 1

a/

\(A=1.\left(2-1\right)+2\left(3-1\right)+3\left(4-1\right)+...+10\left(11-1\right)=\)

\(=\left(1.2+2.3+3.4+...+10.11\right)-\left(1+2+3+...+10\right)=\)

Đặt \(B=1.2+2.3+3.4+...+10.11\)

\(\Rightarrow3B=1.2.3+2.3.3+3.4.3+...+10.11.3=\)

\(=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+10.11.\left(12-9\right)=\)

\(=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-9.10.11+10.11.12=\)

\(=10.11.12\Rightarrow B=\frac{10.11.12}{3}=4.10.11\)

\(\Rightarrow A=B-\left(1+2+3+...+10\right)=4.10.11+\frac{10.\left(1+10\right)}{2}=\)

\(=4.10.11+5.11=11.\left(4.10+5\right)=11.45=495\)

b/

\(B=5^2\left(1+2^2+3^2+...+10^2\right)=25.495=12375\)

Bài 2

Số số hạng của M \(=\frac{2n-1-1}{2}+1=n\)

\(M=\frac{n\left[1+\left(2n-1\right)\right]}{2}=n^2\)là số chính phương

9 tháng 8 2020

a) Đặt A = 1 + 2 + 22 + ... + 22008 (1)

=> 2A = 2 + 22 + 23 + ... + 22009 (2)

Lấy (2) trừ (1) theo vế ta có : 

2A - A = (2 + 22 + 23 + ... + 22009) - (1 + 2 + 22 + ... + 22008)

       A = 22009 - 1

Khi đó B = \(\frac{2^{2009}-1}{1-2^{2009}}=\frac{2^{2009}-1}{-\left(2^{2009}-1\right)}=-1\)

b) Ta có A = \(\frac{20^{10}+1}{20^{10}-1}\)

=> A - 1 = \(\frac{20^{10}+1-20^{10}+1}{20^{10}}=\frac{2}{20^{10}}\)

Lại có B = \(\frac{20^{10}-1}{20^{10}-3}\)

=> B - 1 = \(\frac{20^{10}-1-20^{10}+3}{20^{10}-3}=\frac{2}{2^{10}-3}\)

Vì \(\frac{2}{2^{10}}< \frac{2}{2^{10}-3}\)

=> A - 1 < B - 1

=> A < B

9 tháng 8 2020

a) \(B=\frac{1+2+2^2+2^3+...+2^{2008}}{1-2^{2009}}\)

Đặt \(Q=1+2+2^2+...+2^{2008}\)

\(2Q=2+2^2+2^3+...+2^{2009}\)

\(2Q-Q=2+2^2+2^3+...+2^{2009}-1-2-2^2-...-2^{2008}\)

\(\Rightarrow Q=2^{2009}-1\)

Ta thấy \(Q\) là số đối của \(2^{2009}-1\)

\(\Rightarrow B=-1\)

Vậy \(B=-1\).

b) Ta có: \(A=\frac{20^{10}+1}{20^{10}-1}=\frac{20^{10}-1+2}{20^{10}-1}=1+\frac{2}{20^{10}-1}\)

Ta lại có: \(B=\frac{20^{10}-1}{20^{10}-3}=\frac{20^{10}-3+2}{20^{10}-3}=1+\frac{2}{20^{10}-3}\)

Vì \(\frac{2}{20^{10}-1}< \frac{2}{20^{10}-3}\) nên \(1+\frac{2}{20^{10}-1}< 1+\frac{2}{20^{10}-3}\)

\(\Rightarrow A< B\)

Vậy \(A< B\).