Tính:

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) \(B=3+3^2+3^3+...+3^{120}\)

\(B=3\cdot1+3\cdot3+3\cdot3^2+...+3\cdot3^{119}\)

\(B=3\cdot\left(1+3+3^2+...+3^{119}\right)\)

Suy ra B chia hết cho 3 (đpcm)

b) \(B=3+3^2+3^3+...+3^{120}\)

\(B=\left(3+3^2\right)+\left(3^3+3^4\right)+\left(3^5+3^6\right)+...+\left(3^{119}+3^{120}\right)\)

\(B=\left(1\cdot3+3\cdot3\right)+\left(1\cdot3^3+3\cdot3^3\right)+\left(1\cdot3^5+3\cdot3^5\right)+...+\left(1\cdot3^{119}+3\cdot3^{119}\right)\)

\(B=3\cdot\left(1+3\right)+3^3\cdot\left(1+3\right)+3^5\cdot\left(1+3\right)+...+3^{119}\cdot\left(1+3\right)\)

\(B=3\cdot4+3^3\cdot4+3^5\cdot4+...+3^{119}\cdot4\)

\(B=4\cdot\left(3+3^3+3^5+...+3^{119}\right)\)

Suy ra B chia hết cho 4 (đpcm)

c) \(B=3+3^2+3^3+...+3^{120}\)

\(B=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+\left(3^7+3^8+3^9\right)+...+\left(3^{118}+3^{119}+3^{120}\right)\)

\(B=\left(1\cdot3+3\cdot3+3^2\cdot3\right)+\left(1\cdot3^4+3\cdot3^4+3^2\cdot3^4\right)+...+\left(1\cdot3^{118}+3\cdot3^{118}+3^2\cdot3^{118}\right)\)

\(B=3\cdot\left(1+3+9\right)+3^4\cdot\left(1+3+9\right)+3^7\cdot\left(1+3+9\right)+...+3^{118}\cdot\left(1+3+9\right)\)

\(B=3\cdot13+3^4\cdot13+3^7\cdot13+...+3^{118}\cdot13\)

\(B=13\cdot\left(3+3^4+3^7+...+3^{118}\right)\)

Suy ra B chia hết cho 13 (đpcm)

Bài 3 : 

A = 26 + 27 + 28 + 29 + 30 + 31 + 32 + 33

=> A = ( 33 + 26 ) . 8 : 2 = 236

Vậy A = 236

\(\text{#Hok tốt!}\)

a) 2 . 31 . 12 + 4 . 6 . 42 + 8 . 27 . 3 

 = 24 . 31 + 24 . 42 + 24 . 27

= 24 . ( 31 + 42 + 27 ) 

= 24 . 100

= 2400

22 tháng 9 2017

Bài 31 :

a ) 3111 < 1714

b ) 657 > 421

Bài 32 : 

23 tháng 9 2017

Bài 31 :

a) 3111 < 1714

b) 657 > 421

20 tháng 3 2017

a , \(\left(\dfrac{-2}{3}+1\dfrac{1}{4}-\dfrac{1}{6}\right):\dfrac{-24}{10}\)

=\(\left(\dfrac{-2}{3}+\dfrac{5}{4}-\dfrac{1}{6}\right):\dfrac{-12}{5}\)

=\(\left(\dfrac{-8}{12}+\dfrac{15}{12}-\dfrac{2}{12}\right)\cdot\dfrac{-5}{12}\)

=\(\dfrac{5}{12}\cdot\dfrac{-5}{12}=\dfrac{-25}{144}\)

b , \(\dfrac{13}{15}\cdot0,25\cdot3+\left(\dfrac{8}{15}-1\dfrac{19}{60}\right)1\dfrac{23}{24}\)

=\(\dfrac{13}{15}\cdot\dfrac{1}{4}\cdot3+\left(\dfrac{8}{15}-\dfrac{79}{60}\right)\cdot\dfrac{57}{24}\)

=\(\dfrac{13}{20}-\dfrac{47}{60}\cdot\dfrac{57}{24}\)

=\(\dfrac{13}{20}-\dfrac{893}{480}=\dfrac{312}{480}-\dfrac{893}{480}=\dfrac{-581}{480}\)

c , \(\left(\dfrac{12}{32}+\dfrac{5}{-20}-\dfrac{10}{24}\right):\dfrac{2}{3}\)

=\(\left(\dfrac{180}{480}-\dfrac{120}{480}-\dfrac{200}{480}\right)\cdot\dfrac{3}{2}\)

= \(\dfrac{-7}{24}\cdot\dfrac{3}{2}=\dfrac{-7}{16}\)

d , \(4\dfrac{1}{2}:\left(2,5-3\dfrac{3}{4}\right)+\left(-\dfrac{1}{2}\right)\)

=\(\dfrac{9}{2}:\left(\dfrac{5}{2}-\dfrac{15}{4}\right)-\dfrac{1}{2}\)

=\(\dfrac{9}{2}:\dfrac{-5}{4}-\dfrac{1}{2}=\dfrac{9}{2}\cdot\dfrac{-4}{5}-\dfrac{1}{2}=\dfrac{-18}{5}-\dfrac{1}{2}=\dfrac{-41}{10}\)

e , \(\dfrac{-5}{2}:\left(\dfrac{3}{4}-\dfrac{1}{2}\right)=\dfrac{-5}{2}\left(\dfrac{3}{4}-\dfrac{2}{4}\right)\)

=\(\dfrac{-5}{2}:\dfrac{1}{4}=\dfrac{-5}{2}\cdot4=-10\)

3 tháng 8 2020

a) \(\frac{7}{5}.\frac{-31}{125}.\frac{1}{2}.\frac{10}{17}.\frac{-1}{2^3}=\frac{7.\left(-31\right).1.10.\left(-1\right)}{5.2.125.17.2^3}=\frac{31.7}{17.125.2^3}=\frac{217}{17000}\)

b) \(\left(\frac{17}{28}+\frac{18}{29}-\frac{19}{30}-\frac{20}{31}\right).\left(\frac{-5}{12}+\frac{1}{4}+\frac{1}{6}\right)=\left(\frac{17}{28}+\frac{18}{29}-\frac{19}{30}-\frac{20}{31}\right).0=0\)

c) \(\left(\frac{1}{2}+1\right).\left(\frac{1}{3}+1\right).\left(\frac{1}{4}+1\right)...\left(\frac{1}{99}+1\right)=\frac{3}{2}.\frac{4}{3}.\frac{5}{4}...\frac{100}{99}=\frac{3.4.5...100}{2.3.4...99}=\frac{100}{2}=50\)

d) \(\left(\frac{1}{2}-1\right)\left(\frac{1}{3}-1\right)\left(\frac{1}{4}-1\right)...\left(\frac{1}{100}-1\right)=\frac{-1}{2}.\frac{-2}{3}.\frac{-3}{4}...\frac{-99}{100}=\frac{-\left(1.2.3..99\right)}{2.3.4...100}=-\frac{1}{100}\)

e) \(\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{899}{30^2}=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{29.31}{30.30}=\frac{1.3.2.4.3.5...29.31}{2.2.3.3.4.4...30.30}=\frac{\left(1.2.3..29\right).\left(3.4.5...31\right)}{\left(2.3.4...30\right).\left(2.3.4...30\right)}\)

\(=\frac{1.31}{30.2}=\frac{31}{60}\)

23 tháng 6 2018

a,

\(\left(20+9\dfrac{1}{4}\right):2\dfrac{1}{4}=\left(20+\dfrac{37}{4}\right):\dfrac{9}{4}\\ =\dfrac{117}{4}\cdot\dfrac{4}{9}\\ =\dfrac{117}{9}=13\)

b,

\(\left(6-2\dfrac{4}{5}\right)\cdot3\dfrac{1}{8}-1\dfrac{3}{5}:\dfrac{1}{4}\\ =\left(6-\dfrac{14}{5}\right)\cdot\dfrac{25}{8}-\dfrac{8}{5}\cdot4\\ =\dfrac{16}{5}\cdot\dfrac{25}{8}-\dfrac{32}{5}\\ =10-\dfrac{32}{5}\\ =\dfrac{18}{5}\)

c,

\(\dfrac{32}{15}:\left(-1\dfrac{1}{5}+1\dfrac{1}{3}\right)\\ =\dfrac{32}{5}:\left(-\dfrac{6}{5}+\dfrac{4}{3}\right)\\ =\dfrac{32}{5}:\dfrac{2}{15}\\ =\dfrac{32}{5}\cdot\dfrac{15}{2}\\ =48\)

23 tháng 6 2018

a, ( 20 + \(9\dfrac{1}{4}\) ) : \(2\dfrac{1}{4}\)

= ( 20 + \(\dfrac{37}{4}\) ) : \(\dfrac{9}{4}\)

= ( \(\dfrac{80}{4}\) + \(\dfrac{37}{4}\) ) . \(\dfrac{4}{9}\)

= \(\dfrac{117}{4}\) . \(\dfrac{4}{9}\)

= \(\dfrac{117}{9}\) = 13

b, ( 6 - \(2\dfrac{4}{5}\) ) . \(3\dfrac{1}{8}\) - \(1\dfrac{3}{5}\) : \(\dfrac{1}{4}\)

= ( 6 - \(\dfrac{14}{5}\) ) . \(\dfrac{25}{8}\) - \(\dfrac{8}{5}\) . 4

= ( \(\dfrac{30}{5}\) - \(\dfrac{14}{5}\) ) . \(\dfrac{25}{8}\) - \(\dfrac{8}{5}\) . 4

= \(\dfrac{16}{5}\) . \(\dfrac{25}{8}\) - \(\dfrac{8}{5}\). 4

= 10 - \(\dfrac{32}{5}\)

= \(\dfrac{50}{5}\) - \(\dfrac{32}{5}\)

= \(\dfrac{18}{5}\)

c, \(\dfrac{32}{15}\) : ( -\(1\dfrac{1}{5}\) + \(1\dfrac{1}{3}\) )

= \(\dfrac{32}{15}\) : ( \(\dfrac{-6}{5}\) + \(\dfrac{4}{3}\) )

= \(\dfrac{32}{15}\) : ( \(\dfrac{-18}{15}\) + \(\dfrac{20}{15}\) )

= \(\dfrac{32}{15}\) : \(\dfrac{2}{15}\)

= \(\dfrac{32}{15}\) . \(\dfrac{15}{2}\)

= 16

a=1135/23-((167/32+330/23)

a=1135/23-14401/736

a=953/32

15 tháng 8 2020

Bài đây tính nhanh nhé ミ★ʟuғғʏ☆мũ☆ʀơм★彡 chứ không phải quy đồng lên đâu :)

a) \(A=49\frac{8}{23}-\left(5\frac{7}{32}+14\frac{8}{23}\right)\)

\(A=49\frac{8}{23}-5\frac{7}{32}-14\frac{8}{23}\)

\(A=\left(49\frac{8}{23}-14\frac{8}{23}\right)-5\frac{7}{32}=35-5\frac{7}{32}=35-\frac{167}{32}=\frac{953}{32}\)

b) \(B=\frac{-3}{7}\cdot\frac{5}{9}+\frac{4}{9}:\frac{-7}{3}+2\frac{3}{7}\)

\(B=\frac{-3}{7}\cdot\frac{5}{9}+\frac{4}{9}\cdot\frac{-3}{7}+2\frac{3}{7}\)

\(B=\frac{-3}{7}\left(\frac{5}{9}+\frac{4}{9}\right)+2\frac{3}{7}\)

\(B=\frac{-3}{7}+\frac{17}{7}=\frac{14}{7}=2\)

c) \(C=\left(19\frac{5}{8}:\frac{7}{12}-13\frac{1}{4}:\frac{7}{12}\right)\cdot\frac{4}{5}\)

\(C=\left[\left(19\frac{5}{8}-13\frac{1}{4}\right):\frac{7}{12}\right]\cdot\frac{4}{5}\)

\(C=\left[\left(19\frac{5}{8}-13\frac{2}{8}\right):\frac{7}{12}\right]\cdot\frac{4}{5}\)

\(C=6\frac{3}{8}\cdot\frac{4}{5}=\frac{51}{8}\cdot\frac{4}{5}=\frac{51}{2}\cdot\frac{1}{5}=\frac{51}{10}\)

d) \(D=\frac{54\cdot107-53}{53\cdot107+54}=\frac{\left(53+1\right)\cdot107-53}{53\cdot107+54}=\frac{53\cdot107+107-53}{53\cdot107+54}=\frac{53\cdot107+54}{53\cdot107+54}=1\)