K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2016

tham the 

14 tháng 11 2016

có giỏi thì làm một câu xem nào

AH
Akai Haruma
Giáo viên
14 tháng 9 2024

Lời giải:
\(A=\frac{-1}{2}.\frac{-2}{3}.\frac{-3}{4}....\frac{-998}{999}.\frac{-999}{1000}\\ =\frac{(-1)(-2)(-3)...(-998)(-999)}{2.3.4....1000}\\ =-\frac{1.2.3.4....998.999}{2.3.4...1000}\\ =-\frac{1}{1000}\)

AH
Akai Haruma
Giáo viên
14 tháng 9 2024

Trong $B$ có một thừa số là $1-\frac{7}{7}=0$ nên $B=0$ (do số nào nhân với $0$ cũng sẽ bằng $0$.

----------------------

$C=\frac{1.3}{2^2}.\frac{2.4}{3^2}.\frac{3.5}{4^2}...\frac{49.51}{50^2}$

$=\frac{1.3.2.4.3.5.....49.51}{2^2.3^2.4^2....50^2}$

$=\frac{(1.2.3...49)(3.4.5...51)}{(2.3.4...50)(2.3.4...50)}$
$=\frac{1.2.3...49}{2.3.4...50}.\frac{3.4.5...51}{2.3.4....50}$

$=\frac{1}{50}.\frac{51}{2}=\frac{51}{100}$

19 tháng 12 2017

1:Hỏi đáp Toán

17 tháng 12 2016

\(A=\frac{3^4.5^7-9^2.21}{3^5}=\frac{3^4.5^7-3^4.21}{3^5}=\frac{3^4.\left(5^7-21\right)}{3^5}=\frac{78125-21}{3}=\frac{78104}{3}\)

Vậy : \(A=\frac{78104}{3}\)

\(B=\frac{2^9.16+2^8.68}{2^{10}}=\frac{2^9.16+2^8.2.34}{2^{10}}=\frac{2^9.16+2^9.34}{2^{10}}\)

\(=\frac{2^9.\left(16+34\right)}{2^{10}}=\frac{2^9.50}{2^{10}}=\frac{50}{2}=25\)

Vậy :\(B=25\)

16 tháng 1 2020

                                                      Bài giải

\(B=1\cdot2^2+2\cdot3^2+3\cdot4^2+...+99\cdot100^2\)

\(B=1\cdot2\cdot\left(3-1\right)+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-1\right)+...+99\cdot100\cdot\left(101-1\right)\)

\(B=1\cdot2\cdot3-1\cdot2+2\cdot3\cdot4-2\cdot3+...+99\cdot100\cdot101-99\cdot100\)

\(B=\left(1\cdot2\cdot3+2\cdot3\cdot4+...+99\cdot100\cdot101\right)-\left(1\cdot2+2\cdot3+...+99\cdot100\right)\)

Đặt \(C=1\cdot2\cdot3+2\cdot3\cdot4+...+99\cdot100\cdot101\)

\(4C=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot\left(5-1\right)+...+99\cdot100\cdot101\cdot\left(102-98\right)\)

\(4C=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot5-1\cdot2\cdot3\cdot4+...+99\cdot100\cdot101\cdot102-98\cdot99\cdot100\cdot101\)

\(4C=99\cdot100\cdot101\cdot102\)

\(4C=101989800\)

\(C=101989800\text{ : }4\)

\(C=25497450\)

16 tháng 1 2020

Bạn vào câu hỏi tương tự tham khảo nha !

24 tháng 11 2016

Tính giá trị của A, biết:

A = 1.3+2.4+3.5+...+99.101

Bài làm :

 

Thay thừa số 3, 4, 5, 6.....101 bắng (2+1), (3+1), (4+1).....(100 +1)

Ta có

A = 1(2+1)+2(3+1)+3(4+1)+...+99(100+1)

A = 1.2+1+2.3+2+3.4+3+...+99.100+99

A = (1.2+2.3+3.4+...+99.100)+(1+2+3+...+99)

A = 333300 + 4950 = 338250

Dãy đầu áp dụng công thức [*2] , Dãy sau công thức [*1]

Tính: A = 1.4+2.5+3.6+...+99.102 = ?

 

Bài làm:

 

Thay thừa số 3, 4, 5, 6.....101 bắng (2+1), (3+1), (4+1).....(100 +1)

Ta có

A = 1(2+1)+2(3+1)+3(4+1)+...+99(100+1)

A = 1.2+1+2.3+2+3.4+3+...+99.100+99

A = (1.2+2.3+3.4+...+99.100)+(1+2+3+...+99)

A = 333300 + 4950 = 338250

Dãy đầu áp dụng công thức [*2] , Dãy sau công thức [*1]

Tính tổng các bình phương của 100 số tự nhiê n đầu tiên

A = 12 +22 +32+...+992 +1002

Bài làm :

 

thay thừa số 3, 4, 5, 6.....101 bắng (2+1), (3+1), (4+1).....(100 +1)

Ta có

A = 1(2+1)+2(3+1)+3(4+1)+...+99(100+1)

A = 1.2+1+2.3+2+3.4+3+...+99.100+99

A = (1.2+2.3+3.4+...+99.100)+(1+2+3+...+99)

A = 333300 + 4950 = 338250

Dãy đầu áp dụng công thức [*2] , Dãy sau công thức [*1]