Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, 5a2xy-10a3x-15ay = 5a( axy - 2a\(^2\)x - 3y )
2, mxy-m2x+my = m( xy - mx + y )
3, 2mx-4m2xy+6mx = 2mx( 1 - 2my + 3 ) = 2mx( 4 - 2my )
4, a2b-2ab2+ab = ab( a - 2b + 1 )
5, 5a2b-2ab2+ab = ab( 5a - 2b +1 )
6, -3x2y3-6x3y2-x2y2 = -3x\(^2\)y\(^2\) ( y + 2x + 1 )
7, 5x2y4-10x4y2+5x2y2 = 5x\(^{^2y^2}\)( y\(^2\) - 2x\(^2\) + 1 )
8, -2x3y4-4x4y3+2x3y3 = 2\(x^3y^3\) ( -y - 2x + 1 )
9, 4x3y2-8x3y+16xy2-24 = 4( x\(^3\)y\(^2\) - 2x\(^3\)y + 4 xy\(^2\) - 6 )
10, 12x3y-6xy+3x = 3x( 4x\(^2\)y - 2y + 1 )
11, 2(x-y)-a(x-y) = ( 2 - a ) ( x - y )
12, a(x-y)+b(x-y)= ( a + b ) ( x - y )
13, m(x+y)-n(x+y) = ( m - n ) ( x + y )
14, 2a(x+y)-4(x+y) = ( 2a - 4 )( x + y ) = 2( a - 2 ) ( x + y )
15, 3a(x+y)-6ab(x+y) = ( 3a - 6ab )( x + y ) = 3a( 1 - 2b ) ( x + y )
16, 5a2(x-y)+10a(x-y) = ( 5a\(^2\)+10a )( x - y ) = 5a( a + 2 ) ( x - y )
17, -2ab(x-y)-4a(x-y) = ( -2ab - 4a )( x - y ) = -2a( b + 2 )( x - y )
18, 3a(x-y)+2(x-y) = ( 3a + 2 ) ( x - y )
19, m(a-b)-m2(a-b) = ( m - m\(^2\) ) ( a - b ) = m( 1 - m ) ( a - b )
20, mx(a+b)-m(a+b) = ( mx - m ) ( a + b ) = m( x - 1 )( a + b )
21, x(a-b)-y(b-a) = x( a - b ) + y( a - b ) = ( x + y ) ( a - b )
22, ab(x-5)-a2(5-x) = ab( x - 5 ) + a\(^2\)( x - 5 ) = ( ab + a\(^2\) ) ( x - 5 ) = a( b + a )( x - 5 )
23, 2a2(x-y)-4a(y-x)= 2a\(^2\)( x - y ) + 4a( x - y )=( 2a\(^2\) + 4a ) ( x - y )= 2a( a + 2 )( x - y )
Đăng ít thôi =))
a. \(5a^2xy-10a^3x-15ay=5a\left(axy-2a^2x-3y\right)\)
b. \(mxy-m^2x+my=m\left(xy-mx+y\right)\)
c. \(2mx-4m^2xy+6mx=2mx\left(1-2my+3\right)=2mx\left(-2my+4\right)\)
d. \(a^2b-2ab^2+ab=ab\left(a-2b+1\right)\)
e. \(5a^2b-2ab^2+ab=ab\left(5a-2b+1\right)\)
g.
Phân tích đa thức thành nhân tử
a. 3ab ( x+ y) - 6ab ( y+ x)
=( x + y) ( 3ab - 6ab )
= ( x +y ) ( - 3ab)
b.7a (x - 3)+a2(x2 - 9)
=7a( x- 3) + a2 ( x2 - 32)
=7a ( x - 3 ) + a2 ( x- 3 ) ( x+3 )
= ( x- 3) . 7a + a2 ( x + 3)
= ( x- 3) ( 7a +a2x + 3a2)
c. 34 (x + y) -x -y
= 34 ( x+ y) - ( x+y)
=(x +y ) ( 34 - 1) = 33 ( x+ y)
d. 25 x4 - 942
=( 5x2 )2 - 942
=( 5x2 - 94 ) ( 5x2+94)
e.( 5a - b )2 - ( 2a +3b)2
=( 5a -b -2a - 3b) (5a -b + 2a + 3b)
=(3a - 4b) (7a+ 2b)
k. 22 -3a - b2 +3b
=( 22 - b2 ) + ( -3a +3b)
=( 2-b) (2+b) + 3( -a +b)
a) \(=\left(x-5\right)\left(2+x+5-2x-1\right)=\left(x-5\right)\left(6-x\right)\)
e) \(=\left(ab^3c^2-a^2b^2c^2\right)+\left(ab^2c^3-a^2bc^3\right)=ab^2c^2\left(b-a\right)+abc^3\left(b-a\right)=abc^2\left(b-a\right)\left(b+c\right)\)
1) \(B=5\left(2x-1\right)^2+4\left(x-1\right)\left(x+3\right)+2\left(5-3x\right)^2\)
\(=5\left(4x^2-4x+1\right)+\left(4x-4\right)\cdot\left(x+3\right)+2\left(25-30x+9x^2\right)\)
\(=20x^2-20x+5+4x^2+12x-4x-12+50-60+18x^2\)
\(=42x^2-72x+43\)
2) \(C=\left(2a^2+2a+1\right)\left(2a^2-2a+1\right)-\left(2a+1\right)^2\)
\(=4a^4-4a^3+2a^2+4a^3-4a^2+2a+2a^2-2a+1-\left(4a^2+4a+1\right)\)
\(=4a^4+2a^2-4a^2+2a^2+1-4a^2-4a-1\)
\(=4a^4-4a^2-4a\)
3) Sky Sơn Tùng làm đúng rồi nhé.
4) \(E=\left(x^2-5x+1\right)^2+2\left(5x-1\right)\left(x^2-5x+1\right)\left(5x-1\right)^2\)
\(=x^4+27x^2+1-10x^3+250x^5-1400x^4+1030x^3-302x^2+40x-2\)
\(=-1399x^4-275x^2-1+1020x^3+250x^5+40x\)
5) \(F=\left(a^2+b^2-c^2\right)^2-\left(a^2-b^2+c^2\right)^2\)
\(=\left[a^2+b^2-c^2-\left(a^2-b^2+c^2\right)\right]\cdot\left(a^2+b^2-c^2+a^2-b^2+c^2\right)\)
\(=\left(a^2+b^2-c^2-a^2+b^2-c^2\right)\cdot2a^2\)
\(=\left(2b^2-2c^2\right)\cdot2a^2\)
\(=2\left(b^2-c^2\right)\cdot2a^2\)
\(=2\left(b-c\right)\left(b+c\right)\cdot2a^2\)
\(=2\cdot2a^2\cdot\left(b-c\right)\left(b+c\right)\)
\(=4a^2\cdot\left(b-c\right)\left(b+c\right)\)
6) \(G=\left(a+b+c\right)^2+\left(a+b-c\right)^2-2\left(a+b\right)^2\)
\(=a^2+b^2+c^2+2ab+2ac+2bc+a^2+b^2+\left(-c\right)^2+2ab-2ac-2bc-2\left(a^2+2ab+b^2\right)\)
\(=a^2+b^2+c^2+2ab+a^2+b^2+\left(-c\right)^2+2ab-2a^2-4ab-2b^2\)
\(=0+0+c^2+0+c^2\)
\(=2c^2\)
7) \(H=\left(a+c\right)\left(a-c\right)-\left(a-b-c\right)\left(a-b+c\right)+b\left(b-2x\right)\)
\(=a^2-c^2-\left[\left(a-b\right)^2-c^2\right]+b^2-2bx\)
\(=a^2-c^2-\left(a^2-2ab+b^2-c^2\right)+b^2-2bx\)
\(=a^2-b^2-a^2+2ab-b^2+c^2+b^2-2bx\)
\(=2ab-2bx\)
\(D=\left(9x-1\right)^2+\left(1-5x\right)^2+2\left(9x-1\right)\left(1-5x\right)=\left(9x-1+1-5x\right)^2=\left(4x\right)^2=16x^2\)
d)
$4ab-b^2+2a-3b$: không phân tích được thành nhân tử
e)
$x^2-x-6=x^2-3x+2x-6=x(x-3)+2(x-3)=(x-3)(x+2)$
f)
$9x^2(x-5)+4(5-x)=9x^2(x-5)-4(x-5)$
$=(9x^2-4)(x-5)=[(3x)^2-2^2](x-5)$
$=(3x-2)(3x+2)(x-5)$
a) Biểu thức không phân tích thành nhân tử
b) $8x-2x^3+8x^2y-8xy^2$
$=2x(4-x^2+4xy-4y^2)=2x[4-(x^2-4xy+4y^2)]$
$=2x[2^2-(x-2y)^2]=2x(2-x+2y)(2+x-2y)$
c)
$(x+2)(x-2)(x+1)(x-3)-12$
$=[(x+2)(x-3)][(x-2)(x+1)]-12$
$=(x^2-x-6)(x^2-x-2)-12$
$=a(a+4)-12$ (đặt $x^2-x-6=a$)
$=a^2+4a-12=a^2+4a+4-16=(a+2)^2-4^2$
$=(a+2-4)(a+2+4)=(a-2)(a+6)=(x^2-x-6-2)(x^2-x-6+6)$
$=(x^2-x-8)(x^2-x)=x(x-1)(x^2-x-8)$
Bài 2:
a, \(5x\left(x-1\right)=x-1\)
\(\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\)
\(\Leftrightarrow\left(5x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-1=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=1\end{matrix}\right.\)
Vậy...
b, \(2\left(x+5\right)-x^2-5x=0\)
\(\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\)
\(\Leftrightarrow\left(2-x\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2-x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)
Vậy...
c, \(x^3-\dfrac{1}{4}x=0\)
\(\Leftrightarrow x\left(x^2-\dfrac{1}{4}\right)=0\)
\(\Leftrightarrow x\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-\dfrac{1}{2}=0\\x+\dfrac{1}{2}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=\dfrac{-1}{2}\end{matrix}\right.\)
Vậy...
Bài 3:
1, Đặt \(A=x^2+\dfrac{1}{2}x+\dfrac{1}{16}=x^2+\dfrac{1}{4}.x.2+\dfrac{1}{16}\)
\(=\left(x+0,25\right)^2\)
Thay x = 49,75 vào A ta có:
\(A=50^2=2500\)
2, tương tự
a)9b^2 + 5ab +25a^2/36
b)25x^2 -10xy +y^2
c)(2a+b)^2 - 25
d)x^4 - 4/25y^2