Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
a) \(4^{10}.8^{15}=\left(2^2\right)^{10}.\left(2^3\right)^{15}\)
\(=2^{20}.2^{45}\)
\(=2^{65}\)
\(a,4^{10}\cdot8^{15}=\left[2^2\right]^{10}\cdot\left[2\cdot2^2\right]^{15}=2^{20}\cdot2^{15}\cdot2^{30}=2^{20+15+30}=2^{65}\)
\(b,\frac{27^{16}}{3^{10}}=\frac{\left[3^3\right]^{16}}{3^{10}}=\frac{3^{48}}{3^{10}}=3^{48-10}=3^{38}\)
\(c,\frac{\left[2^9\cdot16+2^9\cdot34\right]}{2^{10}}=\frac{\left[2^9\left\{16+34\right\}\right]}{2^{10}}=\frac{2^9\cdot50}{2^{10}}=\frac{1}{2}\cdot50=25\)
\(d,\frac{3^4\cdot57-9^2\cdot21}{3^5}=\frac{3^4\cdot57-\left[3^2\right]^2\cdot21}{3^5}=\frac{3^4\cdot57-3^4\cdot21}{3^5}=\frac{3^4\left[57-21\right]}{3^5}=\frac{1}{3}\cdot36=12\)
a,\(3^3.3^2-3^5+5^8.1-5^{12}:5^4\)
=\(3^5-3^5+5^8-5^8\)
=0
9!-8!-7! :\(8^2\)
=8!.9-8!-8!.8
=8!.(9-1-8)
=8!.0
=0
2^2 = 2.2 = 4
2^3 = 2.2.2 = 8
2^4 = 2.2.2.2. = 16
2^5 = 2.2.2.2.2 = 32
2^6 = 2.2.2.2.2.2 = 64
2^7 = 2.2.2.2.2.2.2 = 128
2^8 = 2.2.2.2.2.2.2.2 = 256
2^9 = 2.2.2.2.2.2.2.2.2 = 512
3^2 = 3.3 = 9
3^3 = 3.3.3 = 27
3^4 = 3.3.3.3 = 81
3^5 = 3.3.3.3.3 = 243
=> mình giải giúp bạn hai bài trên rồi nhé, cứ thế rồi bạn làm mấy bài tiếp theo chứ mà giải nữa thì lâu lắm với bài cũng dễ :>
a: \(S=\left(1+3\right)+3^2\left(1+3\right)+3^4\left(1+3\right)+...+3^8\left(1+3\right)\)
\(=4\left(1+3^2+3^4+...+3^8\right)⋮4\)
b: \(S=\left(1+2\right)+2^2\left(1+2\right)+...+2^8\left(1+2\right)\)
\(=3\left(1+2^2+...+2^8\right)⋮3\)
\(\left(2^{10}+2^9\right)+\left(2^8+2^7\right)+....+\left(2^2+2\right)\)
\(=2^9.\left(2+1\right)+2^7.\left(2+1\right)+...+2.\left(2+1\right)\)
\(=2^9.3+2^7.3+...+2.3\)
\(=3.\left(2^9+2^7+...+2\right)⋮3\)
P/S: mấy bài khác tương tự
\(a,2^{10}+2^9+2^8+...+2\)
\(=\left(2^{10}+2^9\right)+\left(2^8+2^7\right)+...+\left(2^2+2\right)\)
\(=2^9\left(2+1\right)+2^7\left(2+1\right)+...+2\left(2+1\right)\)
\(=2^9.3+2^7.3+...+2.3\)
\(=3\left(2^9+2^7+...+2\right)⋮3\left(đpcm\right)\)
\(b,1+3+3^2+3^3+...+3^{99}\)
\(=\left(1+3\right)+\left(3^2+3^3\right)+...+\left(3^{98}+3^{99}\right)\)
\(=4+3^2\left(1+3\right)+...+3^{98}\left(1+3\right)\)
\(=4+3^2.4+...+3^{98}.4\)
\(=4\left(1+3^2+...+3^{98}\right)⋮4\left(đpcm\right)\)
\(c,1+5+5^2+5^3+...+5^{1975}\)
\(=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{1974}+5^{1975}\right)\)
\(=6+5^2\left(1+5\right)+...+5^{1974}\left(1+5\right)\)
\(=6+5^2.6+...+5^{1974}.6\)
\(=6\left(1+5^2+...+5^{1974}\right)⋮6\left(đpcm\right)\)
\(a.\left(2^{10}+2^8\right):2^8=5\)
\(b.\left(9^5+3^2\right):3^2=6562\)
=2^10:2^8+2^8:2^8
=4+1
=5
b, = 9^5:3^2+3^2:3^2
=3^8+1
=6562