Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(C=\frac{1}{100}-\left(\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{99-98}{98.99}+\frac{100-99}{99.100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{100}\right)=\frac{2}{100}-1=-\frac{49}{50}\)
mk nghĩ thế này: xét k E N* ta có:
(100-k)2 - (100-k).100+5000
= 1002 - 2.100.k +k2 - 1002 + 100k+ 5000
= k2 - 100k + 5000
lần lượt thay k = 1;2;3;...;99 ta có
12 - 100+ 5000 = 992 - 9900+ 5000
22 - 200+ 5000 = 982 - 9800+ 500
...
992 - 9900+ 5000 = 12 - 100 + 5000
ta có: 2A = \(\frac{1^2+99^2}{1^2-100+5000}+\frac{2^2+98^2}{2^2-200+5000}+...+\frac{99^2+1^2}{99^2-9900+5000}\)
mặt khác k2 + (100-k)2 = k3 + 1002 - 2.100k+ k2 = 2(k2 - 100k + 5000)
do đó \(\frac{k^2+\left(100-k\right)^2}{k^2-100k+5000}=2\)
=> 2A = 2+2+2+...+2 ( có 99 số hạng là 2)
do đó A= \(\frac{2.99}{2}=99\)
duyệt đi
Bài 1:
A = 1 + 3 + 32 + ... + 3100
=> 3A = 3 + 32 + ... + 3101
=> 2A = 3101 - 1
=> A = \(\frac{3^{101}-1}{2}\)
B = 1 + 42 + 44 + ... + 4100
=> 8B = 42 + 44 + ... + 4102
=> 7B = 4102 - 1
=> B = \(\frac{4^{102}-1}{7}\)
Bài 2:
a) S1 = 22 + 42 + ... + 202
=> S1 = 22(1+22+...+102)
=> S1 = 22.385
=> S1 = 1540
b) S2 = 1002 + 2002 + ... + 10002
=> S2 = 1002(1+22+...+102)
=> S2 = 1002.385
=> S2 = 3850000
c/
C = 1/100-1/100-1/99-1/99-1/98-1/98-1/97-..........-1/3-1/2-1/2-1/1
C = 1/100-1/100-1/1
C = 0-1/1
C = -1
\(\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}.\)
\(=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(=\frac{1}{100}-\left(1-\frac{1}{100}\right)=\frac{1}{100}-\frac{99}{100}=\frac{98}{100}=\frac{49}{50}\)
S = 1+1/2.(1+2)+1/3.(1+2+3)+...+1/100.(1+2+3+...+100)
= 1+1/3.(1+2+3)+1/5.(1+2+3+4+5)+...+1/99(1+2+3+...+99) + 1/2.(1+2)+1/4.(1+2+3+4)+...+1/100.(1+2+3+...+100)
= (1+2+3+...+50)+(3/2+5/2+7/2+...+101/2)
= 1275+1300
= 2575
\(A=\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)...\left(\frac{1}{100^2-1}\right)\)
\(-A=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)...\left(1-\frac{1}{100^2}\right)\)
\(-A=\frac{3}{4}\cdot\frac{8}{9}\cdot...\cdot\frac{9999}{10000}\)
\(-A=\frac{\left(1\cdot3\right)\left(2\cdot4\right)...\left(99\cdot101\right)}{\left(2\cdot2\right)\left(3\cdot3\right)...\left(100\cdot100\right)}\)
\(-A=\frac{\left(1\cdot2\cdot...\cdot99\right)\left(3\cdot4\cdot...101\right)}{\left(2\cdot3\cdot...\cdot100\right)\left(2\cdot3\cdot...\cdot100\right)}\)
\(-A=\frac{1\cdot101}{100\cdot2}\)
\(-A=\frac{101}{200}\)
\(A=\frac{-101}{200}\)