K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2016

177147

27 tháng 9 2016

3^5 x 27^2

= 243 x 729

=  177 147

21 tháng 10 2017

2017

chắc chắn 100% k cho mình nhá kết bạn luôn đi

21 tháng 10 2017

nhưng bn ơi cách lm thì ntn

28 tháng 7 2015

+> Lấy (x + y + z)^2 = x^2+y^2+z^2+2xy+2yz+2xz = 1+2xy+2yz+2xz

Mà (x + y + z)^2 = 1

=> 2xy+2yz+2xz = 0

=> xy+yz+xz = 0

=> (xy+yz+xz)(x + y + z) = 0

+> Lấy (x + y + z)^3 = x^3 + y^3 + z^3 + 6xyz + 3xy^2 + 3x^2y + 3x^2z + 3xz^2 + 3yz^2 + 3y^2z = 1 +  6xyz + 3xy^2 + 3x^2y + 3x^2z + 3xz^2 + 3yz^2 + 3y^2z 

Mà (x + y + z)^3 = 1

=>  6xyz + 3xy^2 + 3x^2y + 3x^2z + 3xz^2 + 3yz^2 + 3y^2z = 0

=> 6xyz + 3(xy^2 + x^2y + x^2z + xz^2 + yz^2 + y^2z) = 0

=> 6xyz + 3[xy(x+y) + xz(x+z) + yz(y+z)] = 0

=> 6xyz + 3[xy(1-z) + xz(1-y) + yz(1-x)] = 0

=> 6xyz + 3(xy - xyz + xz - xyz + yz - xyz) = 0

Mà xy+yz+xz = 0

=> 6xyz - 9xyz = 0

=> xyz = 0

Mà (xy+yz+xz)(x + y + z) = 0

=> (xy+yz+xz)(x + y + z) = xyz

=> (xy+yz+xz)(x+y+z) - xyz = 0

Phân tích đa thức trên thành nhân tử, ta có (x+y)(y+z)(x+z) = 0

=> x+y = 0 ; y+z = 0 ; x+z = 0

Có x^2017 + y^2017 + z^2017

= (x+y)(x^2017 -x^2016y+...+y^2017) + z^2017         (1)

= z^ 2017
Có x+y = 0 => x = -y

=> (x + y + z )^2017 = z^2017                                  (2)

Từ (1) và (2) = > x^2017 + y^2017 + z^2017 = (x + y + z )^2017 = 1

 

kim chiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

6 tháng 11 2016

cho\(\Delta ABC\)có 3 góc nhọn, đường cao BE, CF cắt nhau tại H. Qua A vẽ các đường thảng song song với BE và CF lần lượt cắt các đường thẳng CF và BE tại P và Q

1) CM: AH.AB=QA.BC

2)CM: BF.BA+CE.CA=BC2

3) Đường trung tuyến AM của tam giác ABC cắt PQ tại K. CM: 4 điểm A, K, E, Q cùng thuộc một đường tròn

12 tháng 3 2017

Sai đề rồi nha bạn! Điều kiện:  \(x^2+y^3\ge x^3+y^4\)

Sử dụng bất đẳng thức  \(C-S,\)  ta có:

\(\left(x^3+y^3\right)^2=\left(x\sqrt{x}.x\sqrt{x}+y^2.y\right)^2\le\left(x^3+y^4\right)\left(x^3+y^2\right)\le\left(x^2+y^3\right)\left(x^3+y^2\right)\)

\(\le\left(\frac{x^2+y^3+x^3+y^2}{2}\right)^2\)

\(\Rightarrow\)  \(x^3+y^3\le\frac{x^2+y^3+x^3+y^2}{2}\)  \(\Leftrightarrow\)  \(x^3+y^3\le x^2+y^2\) \(\left(1\right)\)

Lại có:   \(\left(x^2+y^2\right)^2=\left(x\sqrt{x}.\sqrt{x}+y\sqrt{y}.\sqrt{y}\right)^2\le\left(x^3+y^3\right)\left(x+y\right)\le\left(x^2+y^2\right)\left(x+y\right)\)

\(\Rightarrow\)  \(x^2+y^2\le x+y\)  \(\left(2\right)\)

Mặt khác, từ  \(\left(2\right)\)  với lưu ý rằng  \(x+y\le\sqrt{2\left(x^2+y^2\right)}\) \(\left(i\right)\)và  \(x,y\in R^+\) , ta thu được:

 \(x^2+y^2\le\sqrt{2\left(x^2+y^2\right)}\) \(\Leftrightarrow\)  \(x^2+y^2\le2\)   \(\left(3\right)\)

nên do đó,  \(\left(i\right)\)  suy ra \(x+y\le\sqrt{2.2}=2\)  \(\left(4\right)\)

Từ \(\left(1\right);\left(2\right);\left(3\right)\)  và  \(\left(4\right)\)  ta có đpcm

21 tháng 9 2019

Bài 2 :  Đề thiếu ! Nếu tìm n thì đến đây là không làm được nữa nha bạn !

\(n^5-n=n\left(n^4-1\right)\) \(⋮\text{ }30\)

khi \(\orbr{\begin{cases}n\text{ }⋮\text{ }30\\n^4-1\text{ }⋮\text{ }30\end{cases}}\)

21 tháng 9 2019

Thầy ra đề có nhiêu đó thôi, bài đó mình tính ra được n (n - 1)(n + 1)(n2 + 1) thì bí rồi