K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 7 2018

\(3.\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

=\(\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

=\(\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

=\(\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

=\(\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

=\(\left(2^{32}-1\right)\left(2^{32}+1\right)\)

=\(2^{64}-1\)

15 tháng 7 2016

\(3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Leftrightarrow\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Leftrightarrow\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Leftrightarrow\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Leftrightarrow\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)\)

\(\Leftrightarrow\left(2^{32}-1\right)\left(2^{32}+1\right)\)

\(\Leftrightarrow2^{64}-1\)

12 tháng 7 2015

 

A = 3(2^2+1)(2^4+1)(2^8+1)(2^16+1)+1 

 =(22-1)(22+1)(24+1)(28+1)(216+1)+1

=(24-1)(24+1)(28+1)(216+1)+1

=(28-1)(28+1)(216+1)+1

=(216-1)(216+1)+1

=232-1+1

=232 = B

vậy A=B

11 tháng 7 2015

 

3(22+1).(24+1).(28+1)......(232+1)+2

=(22-1)(22+1).(24+1).(28+1)......(232+1)+2

=(24-1).(24+1).(28+1)......(232+1)+2

=(28-1).(28+1)......(232+1)+2

=....

=(232-1)(232+1)+2

=264-1+2

=264+1

11 tháng 7 2015

3 = 4 -1 = 22  -1 thay vào ta có :

  \(\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)....\left(2^{32}+1\right)+2=\left(2^4-1\right)\left(2^4+1\right)...\left(2^{32}+1\right)+2\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+2=\left(2^{16}-1\right)\left(2^{16}+1\right)\left(2^{32}+1\right)+2\)

\(=\left(2^{32}-1\right)\left(2^{32}+1\right)+2=2^{64}-1+2=2^{64}+1\)

20 tháng 6 2017

Ta có : $3(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)$

$=(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)$

$=(2^4-1)(2^4+1)(2^8+1)(2^{16}+1)(2^{32}+1)$

$=(2^8-1)(2^8+1)(2^{16}+1)(2^{32}+1)$

$=(2^{16}-1)(2^{16}+1)(2^{32}+1)$

$=(2^{32}-1)(2^{32}+1)$

$=2^{64}-1$

20 tháng 6 2017

3.(22+1)(24+1)(28+1)(216+1)(232+1)

= (22-1)(22+1)(24+1)(28+1)(216+1)(232+1)

= (24-1)(24+1)(28+1)(216+1)(232+1)

= (28-1)(28+1)(216+1)(232+1)

= (216-1)(216+1)(232+1)

= (232-1)(232+1)

= 264 - 1

Gợi ý: Áp dụng hằng đẳng thức số 3 trong 7 hằng đẳng thức đáng nhớ

30 tháng 11 2022

\(\dfrac{1}{1-x}+\dfrac{1}{1+x}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{1+x+1-x}{1-x^2}+\dfrac{2}{1+x^2}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{2+2x^2+2-2x^2}{1-x^4}+\dfrac{4}{1+x^4}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{4+4x^4+4-4x^4}{1-x^8}+\dfrac{8}{1+x^8}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{8+8x^8+8-8x^8}{1-x^{16}}+\dfrac{16}{1+x^{16}}\)

\(=\dfrac{16+16x^{16}+16-16x^{16}}{1-x^{32}}=\dfrac{32}{1-x^{32}}\)

26 tháng 6 2015

(2+1)(2^2+1)(2^4 +1)(2^8+1)(2^16+1) - 2^32

=1.(2+1)(22+1)(24 +1)(28+1)(216+1) - 232

=(2-1).(2+1)(22+1)(24 +1)(28+1)(216+1) - 232

=(22-1)(22+1)(24 +1)(28+1)(216+1) - 232

=(24-1)(24 +1)(28+1)(216+1) - 232

=(28-1)(28+1)(216+1) - 232

=(216-1)(216+1) - 232

=232-1-232

=-1

26 tháng 6 2015

    (2+1 ) ( 2^2 + 1) ... (2^16 + 1) - 2^32

=  3 ( 2^2 + 1) ....( 2^16 + 1) -2^32

= ( 2^2 - 1)( 2^2 +1)....(2^16  + 1 ) - 2^32

= (2^4 - 1)( 2^4 + 1)( 2^8 + 1)( 2^16 + 1) - 2^32

= ( 2^8 - 1) ( 2^8 + 1) ( 2^16  - 1 ) - 2^32

= ( 2^ 16 - 1) (2^16 + 1) - 2^32

= 2^32 - 1 - 2^32

=-1

1 tháng 8 2016

VT=[(2-1)(2+1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)]/2

=[(2^2-1)(2^2+1)(2^4+1)(2^8+1)(2^16+1)]/2

=[(2^4-1(2^4+1)(2^8+1)(2^16+1)]/2

=[(2^8-1)(2^8+1)(2^16+1)]/2

=[(2^16-1)(2^16+1)]/2

=(2^32-1)/2

1 tháng 8 2016

cau nau de sai roi