Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi tổng trên là A . Ta có :
A = 52019 - 52018 + 52017 - 52016 + ..... + 51 - 50 . ( có 2020 số hạng )
= ( 52019 - 52018) + ( 52017- 52016 ) + ..... + ( 51- 50) Có 1010 nhóm ( ... )
= 52018 ( 5 - 1 ) + 52016 ( 5 - 1 ) + ..... + 4
= 52018 . 4 + 52016 . 4 + .... + 4
= 4 ( 52018 + 52016 + .... + 1 )
= 4 ( 52020 - 1 ) : 24
= ( 52020 - 1 ) : 6
5^6+5^7+5^8
=5^6.(1+5+5^2)
=5^6.31 chia hết cho 31
7^6+7^5-7^4
=7^4.(7^2+7-1)
=7^4.55 chia hết cho 11
BÀI 2:
a) \(5^6+5^7+5^8=5^6\left(1+5+5^2\right)=5^6.31\) \(⋮\)\(31\)
b) \(7^6+7^5-7^4=7^4.\left(7^2+7-1\right)=7^4.55\)\(⋮\)\(11\)
c) \(2^3+2^4+2^5=2^3.\left(1+2+2^2\right)=2^3.7\)\(⋮\)\(7\)
d) mk chỉnh đề
\(1+2+2^2+2^3+...+2^{59}\)
\(=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{58}+2^{59}\right)\)
\(=\left(1+2\right)+2^2\left(1+2\right)+...+2^{58}\left(1+2\right)\)
\(=\left(1+2\right)\left(1+2^2+...+2^{58}\right)\)
\(=3\left(1+2^2+...+2^{58}\right)\)\(⋮\)\(3\)
a)3^200=3^2.100=9^100
2^300=2^3.100=8^100
Suy ra 3^200>2^300
b)125^5=(5^3)^5=5^15
25^7=(5^2)7=5^14
Suy ra 125^5>25^7
c)9^20=(3^2)^20=3^40
27^13=(3^3)13=3^39
Suy ra 9^20>27^13
d)3^54=3^6.9=(3^6)^27=729^9
2^81=2^9.9=512^9
Suy ra 3^54>2^81
e)10^30=10^3.10=1000^10
2^100=2^10.10=1024^10
Suy ra 10^30<2^100
f)5^40=5^4.10=625^10
Suy ra 5^40>620^10
a) \(63^7< 64^7=\left(2^6\right)^7=2^{42}< 2^{48}=\left(2^4\right)^{12}=16^{12}\Rightarrow63^7< 16^{12}\)
b) \(3^{151}>3^{150}=\left(3^2\right)^{75}=9^{75}>8^{75}=\left(2^3\right)^{75}=2^{225}\)
c) \(9^{20}=\left(3^2\right)^{20}=3^{40}>3^{39}=\left(3^3\right)^{13}=27^{13}\Rightarrow9^{20}>27^{13}\)
bài 2:
a)\(2^x=32\Leftrightarrow2^x=2^5\Leftrightarrow x=5\)
b)\(2x+3^4=7^2\Leftrightarrow2x+81=49\Leftrightarrow2x=-32\Leftrightarrow x=-16\)
c)\(12x-33=3^2\Leftrightarrow12x-33=9\Leftrightarrow12x=42\Leftrightarrow x=\frac{7}{2}\)
a)A=5+52+53+...+58
A= (5+52)+(53+54) + ... + (57+58)
A= 5( 1+5) + 52(5+52)+... + 56(5+52)
A= 30 + 52 . 30 + ... +56.30
A = 30 ( 1 + 52+...+56) chia hết cho 30
=> A chia hết cho 30
b)B=3+33+35+37+...+329
B = (3 + 33 + 35) + (37+39+311) + ... + ( 327+328+329)
B = 273 + 36 (3 + 33 + 35) + ... + 326 (3 + 33 + 35)
B = 273 + 36.273 + ... + 326.273
B = 273 ( 1 + 36+...326) chia hết cho 273
=> B chia hết cho 273
=(\(5^9.7^5-5^{10}.7^5:5\)) : 20152016
\(=\left(5^9.7^5-5^9.7^5\right):2016^{2016}=0:2015^{2016}=0\)