![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt A = 1.2.3 + 2.3.4 + 3.4.5 + ... + 28.29.30
4A = 1.2.3.(4-0) + 2.3.4.(5-1) + 3.4.5.(6-2) + ... + 28.29.30.(31-27)
4A = 1.2.3.4 - 0.1.2.3. + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + 28.29.30.31 - 27.28.29.30
4A = 28.29.30.31 - 0.1.2.3
4A = 28.29.30.31
\(A=\frac{28.29.30.31}{4}=7.29.30.31=188790\)
Theo cách tính trên ta dễ dàng tính được:
1.2.3 + 2.3.4 + 3.4.5 + ... + (n - 1).n.(n + 1) = \(\frac{\left(n-1\right).n.\left(n+1\right).\left(n+2\right)}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=1\cdot2\cdot3+2\cdot3\cdot4+...+1998\cdot1999\cdot2000\)
\(\Rightarrow4A=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot4+....+1998\cdot1999\cdot2000\cdot4\)
\(\Rightarrow4A=1\cdot2\cdot3\cdot\left(4-0\right)+2\cdot3\cdot4\left(5-1\right)+....+1998\cdot1999\cdot2000\left(2001-1997\right)\)
\(\Rightarrow4A=1\cdot2\cdot3\cdot4-0\cdot1\cdot2\cdot3+2\cdot3\cdot4\cdot5-1\cdot2\cdot3\cdot4+...+1998\cdot1999\cdot2000\cdot2001-1997\cdot1998\cdot1999\cdot2000\)\(\Rightarrow4A=1997\cdot1998\cdot1999\cdot2000\)
\(\Rightarrow A=\frac{1997\cdot1998\cdot1999\cdot2000}{4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt S = 1/1.2.3 - 1/2.3.4 - 1/3.4.5 - ...- 1/97.98.99
S x 2 = 2/1.2.3 - 2/2.3.4 - 2/3.4.5 - ...- 2/97.98.99
= (1/1.2 -1/2.3) - (1/2.3 - 1/3.4 ) - (1/3.4 - 1/4.5) - ...- (1/97.98 - 1/98.99)
= 1/1.2 - 1/2.3 - 1/2.3 + 1/3.4 - 1/3.4 + 1/4.5 - ....- 1/97.98 + 1/98.99
= 1/2 -1/3 + 1/98.99
= 1618/9072 => S = 1618/9072 : 2 = 809/9072
![](https://rs.olm.vn/images/avt/0.png?1311)
4(1.2.3) = 1.2.3.4 - 0.1.2.3
4(2.3.4) = 2.3.4.5 - 1.2.3.4
4(3.4.5) = 3.4.5.6 - 2.3.4.5
....................................
4(n-1)n(n+1) = (n-1)n(n+1)(n+2) - (n-2)(n-1)n(n+1)
=> 4 B = (n-1)n(n+1)(n+2) => B= (n-1)n(n+1)(n+2):4
4(1.2.3)=1.2.3.4 - 0.1.2.3
4(2.3.4)=2.3.4.5 - 1.2.3.4
4(3.4.5)=3.4.5.6 - 2.3.4.5
.........................
......................................
.......................................
![](https://rs.olm.vn/images/avt/0.png?1311)
Đặt A=1/1.2.3+1/2.3.4+...+1/99.100.101
2A=2/1.2.3+2/2.3.4+...2/99.100.101
2A=3-1/1.2.3+4-2/2.3.4+...+101-99/99.100.101
2A=3/1.2.3-1/1.2.3+4/2.3.4-2/2.3.4+...+101/99.100.101-99/99.100.101
2A=1/1.2-1/2.3+1/2.3-1/3.4+...+1/99.100-1/100.101
2A=1/2-1/10100
![](https://rs.olm.vn/images/avt/0.png?1311)
=\(\frac{\left(n-1\right)n\left(n+1\right)\left(n+2\right)}{4}\)
4B = 1.2.3.4 + 2.3.4.4 + ... + (n-1)n(n+1).4
= 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + ... + (n-1)n(n+1)(n+2) - [(n-2)(n-1)n(n+1)]
= (n-1)n(n+1)(n+2) - 0.1.2.3
= (n-1)n(n+1)(n+2)
suy ra \(B = {(n-1)n(n+1)(n+2)\over 4}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
minh chi can ket qua thoi cung duoc ko can giai ra dau
ai lam dung minh kick
Đặt biểu thức trên = A
Xét : B = 1.2.3+2.3.4+....+n.(n+1).(n+2)
4B = 1.2.3.4+2.3.4.4+....+n.(n+1).(n+2).4
= 1.2.3.4+2.3.4.(5-1)+....+n.(n+1).(n+2).[(n+3)-(n-1)]
= 1.2.3.4+2.3.4.5-1.2.3.4+....+n.(n+1).(n+2).(n+3)-(n-1).n.(n+1).(n+2)
= n.(n+1).(n+2).(n+3)
=> B = n.(n+1).(n+2).(n+3)/4
=> A = 222315.222316.222317.222318/4
k mk nha
A=1.2.3+2.3.4+3.4.5+...+112.113.114
4A= 1.2.3.4+ 3.4.5.4+....+112.113.114.4
4A= 1.2.3.(4-0)+3.4.5.(6-2)+.....+ 112.113.114.(115-111)
4A= 1.2.3.4 - 0.1.2.3 + 3.4.5.6 - 2.3.4.5 +.....+ 112.113.114.115 - 111.112.113.114
4A= 112.113.114.115=165920160
A=165920160:4=41480040
chắc chắn 100% đó
1.2.3+2.3.4+3.4.5+.......+112.113.114=1.2.3.4+2.3.4.4+........+112.113.114.4
=1.2.3.(5-1)+2.3.4.(6-1)+.................+112.113.114.(115-111)
=1.2.3-2.3.4+2.3.4-...........................-111.112.113+113.114.115
=113.114.115/3101
nho k minh nha