K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2019

Đặt \(A=1^2+2^2+3^2+...+49^2+50^2\)

\(\Rightarrow A=1.1+2.2+3.3+...+49.49+50.50\)

\(\Rightarrow A=1.\left(2-1\right)+2.\left(3-1\right)+3.\left(4-1\right)+...+49.\left(50-1\right)+50.\left(51-1\right)\)

\(\Rightarrow A=1.2-1+2.3-2+3.4-3+...+49.50-49+50.51-50\)

\(\Rightarrow A=\left(1.2+2.3+3.4+...+49.50+50.51\right)-\left(1+2+3+...+49+50\right)\)

Đặt \(B=1.2+2.3+3.4+...+49.50+50.51\)

\(\Rightarrow3B=1.2.3+2.3.3+3.4.3+...+49.50.3+50.51.3\)

\(\Rightarrow3B=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+49.50.\left(51-48\right)+50.51.\left(52-49\right)\)

\(\Rightarrow3B=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+49.50.51-48.49.50+50.51.52-49.50.51\)

\(\Rightarrow3B=50.51.52\)

\(\Rightarrow B=50.17.52=44200\)

Đặt \(C=1+2+3+...+50\)

\(\Rightarrow C=\frac{\left(1+50\right).50}{2}=1275\)

Thay B, C vào A

\(\Rightarrow A=44200-1275=42925\)

1 tháng 7 2015

2B = 2^2 +3^2+4^2 + ....+51^2

2B-B= 2^2+3^2+4^2+....+51^2 - 1^2 +2^2 + 3^2 +....+50^2

B= 51^2-1^2

= 50^2

=2500

2C = 3^2+4^2+......+ 51^2

2C-C= 3^2+4^2+....+51^2-2^2+3^2+.....+50^2

C= 51^2-2^2

C= 49^2

2D=2^2+3^2+4^2+......+ 50^2

2D-D=  2^2+3^2+......+50^2-1^2+2^2+....+49^2

D= 50^2- 1^2

D= 49^2

30 tháng 12 2015

Xiếc áo thuật đây 722 , muốn xem thêm thì tick 

24 tháng 8 2020

bạn tuấn tú ơi giải hộ mình đi

24 tháng 8 2020

B = 1 + 2 + 22 + 23 + ... + 249 + 250

=> 2B = 2 + 22 + 23 + 24 + ... + 250 + 251

=> 2B - B = 251 - 1

Vậy B = 251 - 1

10 tháng 9 2015

3A = 1+3 + 3+33 + .... + 350 +351

2A=3 + 3+33 + .... + 350 +351 -1-3 - 32 -33 - .... - 350 -351

2A= 351-1

\(A=\frac{3^{51}-1}{2}\)

**** mình đi

1 tháng 8 2017

ai giúp mình bài này với

2/3+3/51=

5 tháng 8 2017

Ta thấy:
\(A=1\cdot3+2\cdot4+...+97\cdot99+98\cdot100\)
\(A=1\cdot\left(1+2\right)+2\cdot\left(1+3\right)+...+97\cdot\left(1+98\right)+98\cdot\left(1+99\right)\)
\(A=\left(1+1\cdot2\right)+\left(2+2\cdot3\right)+...+\left(97+97\cdot98\right)+\left(98+98\cdot99\right)\)
\(A=\left(1+2+...+97+98\right)+\left(1\cdot2+2\cdot3+...+97\cdot98+98\cdot99\right)\)
Đặt \(B=1+2+...+97+98\) ; \(C=1\cdot2+2\cdot3+...+97\cdot98+98\cdot99\). Khi đó: \(A=B+C\)
* Do số các số hạng của tổng B là:    ( 98 - 1 ) : 1 + 1 = 98 ( số hạng ) nên:
\(B=1+2+...+97+98=\frac{\left(98+1\right)\cdot98}{2}=99\cdot49=4851\)
* Ta thấy:
\(C=1\cdot2+2\cdot3+...+97\cdot98+98\cdot99\)
\(\Rightarrow3\cdot C=1\cdot2\cdot3+2\cdot3\cdot3+...+97\cdot98\cdot3+98\cdot99\cdot3\)
\(\Rightarrow3\cdot C=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+...+97\cdot98\cdot\left(99-96\right)+98\cdot99\cdot\left(100-97\right)\)
\(\Rightarrow3\cdot C=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+...+97\cdot98\cdot99-96\cdot97\cdot98+98\cdot99\cdot100-97\cdot98\cdot99\)
\(\Rightarrow3\cdot C=98\cdot99\cdot100\)
\(\Rightarrow C=\frac{98\cdot99\cdot100}{3}\)
\(\Rightarrow C=98\cdot33\cdot100\)
\(\Rightarrow C=323400\)
Vậy: \(A=B+C=4851+323400=328251\)