\(\frac{1}{3}\)+ \(\frac{1}{5}\)+ ...+
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2016

Mấy bạn nhớ ghi cách giải dùm mình luôn nhé

27 tháng 12 2016

có số các số ở mẫu số là : (99-1):2+1=50

có số cặp là:50:2=25

tổng mỗi cặp là:1+99=100

tổng các số ở mẫu số là:100*25=2500

vậy kết quả là: 1/2500

8 tháng 7 2021

Ta có \(\frac{1}{2}+\frac{3}{2^2}+\frac{7}{2^3}+...+\frac{2^{100}-1}{2^{100}}\)

\(\frac{2-1}{2}+\frac{2^2-1}{2^2}+\frac{2^3-1}{2^3}+...+\frac{2^{100}-1}{2^{100}}\)

\(1-\frac{1}{2}+1-\frac{1}{2^2}+1-\frac{1}{2^3}+...+1-\frac{1}{2^{100}}\)

\(=\left(1+1+...+1\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)(100 hạng tử 1)

\(=100-\left(1-\frac{1}{2^{100}}\right)=100-1+\frac{1}{2^{100}}=99+\frac{1}{2^{100}}>99\)(đpcm)

DD
9 tháng 7 2021

\(A=\frac{1}{5}+\frac{1}{5^3}+\frac{1}{5^5}+...+\frac{1}{5^{101}}\)

\(\frac{1}{5^2}A=\frac{1}{5^3}+\frac{1}{5^5}+\frac{1}{5^7}+...+\frac{1}{5^{103}}\)

\(\left(1-\frac{1}{5^2}\right)A=\left(\frac{1}{5}+\frac{1}{5^3}+\frac{1}{5^5}+...+\frac{1}{5^{101}}\right)-\left(\frac{1}{5^3}+\frac{1}{5^5}+\frac{1}{5^7}+...+\frac{1}{5^{103}}\right)\)

\(\frac{24}{25}A=\frac{1}{5}-\frac{1}{5^{103}}\)

\(A=\left(1-\frac{1}{5^{102}}\right).\frac{5}{24}\)

Suy ra \(\left(\frac{1}{5}+\frac{1}{5^3}+\frac{1}{5^5}+...+\frac{1}{5^{101}}\right)\div\left(1-\frac{1}{5^{102}}\right)=\frac{5}{24}\).

8 tháng 7 2021

Ta có:B = \(\frac{1}{2}+\frac{3}{2^2}+\frac{7}{2^3}+...+\frac{2^{100}-1}{2^{100}}=\frac{2-1}{2}+\frac{2^2-1}{2^2}+\frac{2^3-1}{2^3}+...+1-\frac{1}{2^{100}}\)

\(=1-\frac{1}{2}+1-\frac{1}{2^2}+1-\frac{1}{2^3}+...+1-\frac{1}{2^{100}}=100-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

Đặt \(A=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)

\(2A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)

=> \(2A-A=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)

\(A=1-\frac{1}{2^{100}}\)

=> \(B=100-\left(1-\frac{1}{2^{100}}\right)=100-1+\frac{1}{2^{100}}=99+\frac{1}{2^{100}}>99\) (Đpcm)

31 tháng 12 2019

a)\(\frac{1}{7}.\frac{1}{3}+\frac{1}{7}.\frac{1}{2}-\frac{1}{7}\)

\(=\frac{1}{7}.\left(\frac{1}{3}+\frac{1}{2}\right)-\frac{1}{7}\)

\(=\frac{1}{7}.\left(\frac{2}{6}+\frac{3}{6}\right)-\frac{1}{7}\)

\(=\frac{1}{7}.\frac{5}{6}-\frac{1}{7}\)

\(=\frac{5}{42}-\frac{1}{7}\)

\(=\frac{5}{42}-\frac{6}{42}=-\frac{1}{42}\)

23 tháng 7 2017

B. 1/3 - 1/3 - 3/5 +3/5 + 5/7 - 5/7  + 9/11 - 9/11 -11/13 + 11/ 13 + 7/9 + 13/15

= 0 -0-0-0-0+7/9 +13/15

= 74/45

25 tháng 8 2018

b, Nhóm các cặp trái dấu vào với nhau thì hết cuối cùng còn 13/15

c,\(\frac{1}{99}-\frac{1}{99}+\frac{1}{98}-\frac{1}{98}+...+\frac{1}{2}-\frac{1}{3}+1\)

\(\frac{1}{6}+1\)= 7/6