\(\sqrt[3]{16-8\sqrt{5}}\)+\(\sqrt[3]{16+8\sqrt{5}}\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2018

\(x^3=16-8\sqrt{5}+16+8\sqrt{5}+3\sqrt[3]{\left(16-8\sqrt{5}\right)\left(16+8\sqrt{5}\right)}\left(\sqrt[3]{16-8\sqrt{5}}+\sqrt[3]{16+5\sqrt{5}}\right)=32+3\sqrt[3]{256-320}.x=32-12x\)

<=> x3 +12x - 32 = 0

<=> x = 2

3 tháng 11 2018

lập phương lên là đc

22 tháng 3 2017

\(a^3=16-8\sqrt{5}+16+8\sqrt{5}+3.\sqrt[3]{16^2-8^2.5}a\)

\(a^3=32+3.\sqrt[3]{4^3\left(4-5\right)}a=32-12a\)

\(f\left(x\right)=\left[\left(32-12a\right)+12a-31\right]^{2016}=1^{2016}=1\)

22 tháng 3 2017

a=\(\sqrt[3]{16-8\sqrt{5}}\)+\(\sqrt[3]{16+8\sqrt{5}}\)

=\(\sqrt[3]{1-3\sqrt{5}+15-5\sqrt{5}}+\sqrt[3]{1+3\sqrt{5}+15+5\sqrt{5}}\)=\(\sqrt[3]{\left(1-\sqrt{5}\right)^3}+\sqrt[3]{\left(1+\sqrt{5}\right)^3}\)

=1-\(\sqrt{5}+1+\sqrt{5}\)=2

thay vào ta được f(a)=(8+24-31)2016=(-1)2016=1

20 tháng 1 2019

\(a^3=16-8\sqrt{5}+16+8\sqrt{5}+96\sqrt[3]{\left(16-8\sqrt{5}\right)\left(16+8\sqrt{5}\right)}\)

\(a^3=32+96\sqrt[3]{-64}=32+96.\left(-4\right)=-352\)

đến đây dễ r 

20 tháng 1 2019

\(a^3=32+3\sqrt[3]{\left(16-8\sqrt{5}\right)\left(16+8\sqrt{5}\right)}\left(\sqrt[3]{16+8\sqrt{5}}+\sqrt[3]{16-8\sqrt{5}}\right)\)

21 tháng 9 2017

aを見つける= 175度はどれくらい尋ねる

22 tháng 12 2015

giải chi tiết hộ mk nhá

 

22 tháng 12 2015

\(\sqrt[3]{16-8\sqrt{5}}\)=\(\sqrt[3]{1-3\sqrt{5}+15-5\sqrt{5}}\)=\(\sqrt[3]{1-3\sqrt{5}+3\left(\sqrt{5}\right)^2-\left(\sqrt{5}\right)^3}\)=\(\sqrt[3]{\left(1-\sqrt{5}\right)^3}\)=\(1-\sqrt{5}\)

làm tương tự: \(\sqrt[3]{16+8\sqrt{5}}\)=\(1+\sqrt{5}\)

suy ra: a = 2

30 tháng 10 2020

a) Ta có: \(\frac{7\sqrt{2}+2\sqrt{7}}{\sqrt{14}}-\frac{5}{\sqrt{7}+\sqrt{5}}\)

\(=\frac{\sqrt{14}\left(\sqrt{7}+\sqrt{2}\right)}{\sqrt{14}}-\frac{5\left(\sqrt{7}-\sqrt{5}\right)}{\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)}\)

\(=\frac{2\left(\sqrt{7}+\sqrt{2}\right)-5\left(\sqrt{7}-\sqrt{5}\right)}{2}\)

\(=\frac{2\sqrt{7}+2\sqrt{2}-5\sqrt{7}+5\sqrt{5}}{2}\)

\(=\frac{2\sqrt{2}-3\sqrt{7}+5\sqrt{5}}{2}\)

b) Ta có: \(\frac{\sqrt{2}\left(3+\sqrt{5}\right)}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{\sqrt{2}\left(3-\sqrt{5}\right)}{2\sqrt{2}-\sqrt{3-\sqrt{5}}}\)

\(=\frac{\sqrt{2}\left(6+2\sqrt{5}\right)}{4\sqrt{2}+\sqrt{2}\cdot\sqrt{6+2\sqrt{5}}}+\frac{\sqrt{2}\left(6-2\sqrt{5}\right)}{4\sqrt{2}-\sqrt{2}\cdot\sqrt{6-2\sqrt{5}}}\)

\(=\frac{6\sqrt{2}+2\sqrt{10}}{4\sqrt{2}+\sqrt{2}\cdot\sqrt{\left(\sqrt{5}+1\right)^2}}+\frac{6\sqrt{2}-2\sqrt{10}}{4\sqrt{2}-\sqrt{2}\cdot\sqrt{\left(\sqrt{5}-1\right)^2}}\)

\(=\frac{6\sqrt{2}+2\sqrt{10}}{4\sqrt{2}+\sqrt{2}\cdot\left|\sqrt{5}+1\right|}+\frac{6\sqrt{2}-2\sqrt{10}}{4\sqrt{2}-\sqrt{2}\cdot\left|\sqrt{5}-1\right|}\)

\(=\frac{6\sqrt{2}+2\sqrt{10}}{4\sqrt{2}+\sqrt{2}\left(\sqrt{5}+1\right)}+\frac{6\sqrt{2}-2\sqrt{10}}{4\sqrt{2}-\sqrt{2}\cdot\left(\sqrt{5}-1\right)}\)(Vì \(\sqrt{5}>1>0\))

\(=\frac{6\sqrt{2}+2\sqrt{10}}{4\sqrt{2}+\sqrt{10}+\sqrt{2}}+\frac{6\sqrt{2}-2\sqrt{10}}{4\sqrt{2}-\sqrt{10}+\sqrt{2}}\)

\(=\frac{6\sqrt{2}+2\sqrt{10}}{5\sqrt{2}+\sqrt{10}}+\frac{6\sqrt{2}-2\sqrt{10}}{5\sqrt{2}-\sqrt{10}}\)

\(=\frac{6+2\sqrt{5}}{5+\sqrt{5}}+\frac{6-2\sqrt{5}}{5-\sqrt{5}}\)

\(=\frac{\left(\sqrt{5}+1\right)^2}{\sqrt{5}\left(\sqrt{5}+1\right)}+\frac{\left(\sqrt{5}-1\right)^2}{\sqrt{5}\left(\sqrt{5}-1\right)}\)

\(=\frac{\sqrt{5}+1+\sqrt{5}-1}{\sqrt{5}}\)

\(=\frac{2\sqrt{5}}{\sqrt{5}}=2\)

c) Đặt \(A=\sqrt[3]{16-8\sqrt{5}}+\sqrt[3]{16+8\sqrt{5}}\)

Ta có: \(A=\sqrt[3]{16-8\sqrt{5}}+\sqrt[3]{16+8\sqrt{5}}\)

\(\Leftrightarrow A^3=32-12\cdot\left(\sqrt[3]{16-8\sqrt{5}}+\sqrt[3]{16+8\sqrt{5}}\right)\)

\(=32-12A\)

\(\Leftrightarrow A^3+12A-32=0\)

\(\Leftrightarrow A^3-2A^2+2A^2-4A+16A-32=0\)

\(\Leftrightarrow A^2\left(A-2\right)+2A\left(A-2\right)+16\left(A-2\right)=0\)

\(\Leftrightarrow\left(A-2\right)\left(A^2+2A+16\right)=0\)

\(A^2+2A+16>0\)

nên A-2=0

hay A=2

Vậy: \(\sqrt[3]{16-8\sqrt{5}}+\sqrt[3]{16+8\sqrt{5}}=2\)

7 tháng 9 2019

22) \(\frac{1}{\sqrt{5}+\sqrt{2}}+\frac{1}{\sqrt{5}-\sqrt{2}}\)

\(=\frac{\left(\sqrt{5}-\sqrt{2}\right)+\left(\sqrt{5}+\sqrt{2}\right)}{\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)}\)

\(=\frac{2\sqrt{5}}{\sqrt{5^2}-\sqrt{2^2}}\)

\(=\frac{2\sqrt{5}}{5-2}=\frac{2\sqrt{5}}{3}\)

24 tháng 7 2016

2) \(A=\sqrt{15a^2-8a\sqrt{15}+16}\\ =\sqrt{\left(a\sqrt{15}-4\right)^2}\)

b) Khi a=\(\sqrt{\frac{3}{5}}+\sqrt{\frac{5}{3}}\)  thì 

     \(A=\sqrt{\left[\left(\sqrt{\frac{3}{5}}+\sqrt{\frac{5}{3}}\right)\sqrt{15}-4\right]^2}\)

         \(=\sqrt{\left[\left(3+5\right)-4\right]^2}\)

        \(=\sqrt{4^2}\)

         \(=4\)

2 tháng 12 2019

Ta có: \(x=\left(\sqrt{5}-1\right)\sqrt[3]{8\sqrt{5}+16}-\sqrt{21+8\sqrt{5}}\)

\(=\left(\sqrt{5}-1\right)\sqrt[3]{5\sqrt{5}+15+3\sqrt{5}+1}-\sqrt{16+8\sqrt{5}+5}\)

\(=\left(\sqrt{5}-1\right)\sqrt[3]{\left(\sqrt{5}+1\right)^3}-\sqrt{\left(4+\sqrt{5}\right)^2}\)

\(=\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)-\left(4+\sqrt{5}\right)\)

\(=5-1-4-\sqrt{5}=-\sqrt{5}\Rightarrow x^2=5\)

Vậy \(M=\frac{x^4-2x^2-15}{x^{2014}}=\frac{\left(x^2+3\right)\left(x^2-5\right)}{x^{2014}}=\frac{\left(5+3\right)\left(5-5\right)}{5^{2014}}=0\)

Vậy ...........

2 tháng 12 2019

thanks nha