Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Co : X=\(\sqrt[3]{3-2\sqrt{2}}+\sqrt[3]{3+2\sqrt{2}}\)
\(\Leftrightarrow x^3=3-2\sqrt{2}+3+2\sqrt{2}\)+\(3\sqrt[3]{\left(3-2\sqrt{2}\right)\left(3+2\sqrt{2}\right)}x\)
\(\Leftrightarrow x^3=6+3x\)
CMTT : \(y^3=34+3y\)\(\)
\(\Leftrightarrow x^3+y^3-3\left(x+y\right)+2014=6+3x+34+3y-3x-3y+2014\)\(=2054\)
Cho P=x3+y3−3(x+y)+2017. Tính P khi x=3√3+2√2+3√3−2√2và yy=3√17+12√2+3√17−12√2
cứ lập phương cả x và y là được rồi cộng tổng lại được 2040
bài này cũng khá đơn giản, đầu tiên ta lập phương x thì được \(x^3=6+3\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}.\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)\)
hay ta có :\(x^3=6+3x\)
Làm tương tự như x thì cũng có \(y^3=34+3y\)
Đến đây thay vào P thì có P=6+3x+34+3y-3(x+y)+1967=6+34+1967=2007
Ta có:\(x^3=3+2\sqrt{2}+3-2\sqrt{2}+3.\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)\)
\(=\) \(6+\sqrt[3]{9-8}.x\)\(=3x+6\)
Tương tự: \(y^3=3y+34\)
Do đó:\(x^3+y^3-3\left(x+y\right)+2010=3x+6+3y+34-3\left(x+y\right)+2010\)
\(=3\left(x+y\right)-3\left(x+y\right)+34+6+2010=2050\)