K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2022

-\(\dfrac{1}{4}\)x2y

4 tháng 3 2022

giúp m

\(A=x^2y^3\left(\dfrac{1}{5}+\dfrac{2}{3}-\dfrac{3}{4}+1\right)=\dfrac{67}{60}x^2y^3\)

\(B=x^6y^3\cdot\dfrac{1}{4}x^2y^4z^2=\dfrac{1}{4}x^8y^7z^2\)

\(A+B=\dfrac{67}{60}x^2y^3+\dfrac{1}{4}x^8y^7z^2\)

\(A-B=\dfrac{67}{60}x^2y^3-\dfrac{1}{4}x^8y^7z^2\)

5 tháng 3 2022

A=x2y3(15+23−34+1)=6760x2y3A=x2y3(15+23−34+1)=6760x2y3

B=x6y3⋅14x2y4z2=14x8y7z2B=x6y3⋅14x2y4z2=14x8y7z2

A+B=6760x2y3+14x8y7z2A+B=6760x2y3+14x8y7z2

A−B=6760x2y3−14x8y7z2

15 tháng 5 2017

a) x6+x2y5+xy6+x2y5-xy6

= x6+(x2y5+x2y5)+(xy6-xy6)

= x6+2x2y5

b) \(\dfrac{1}{2}\)x2y3-x2y3+3x2y2z2-z4-3x2y2z2

= (\(\dfrac{1}{2}\)x2y3-x2y3)+(3x2y2z2-3x2y2z2)-z4

= -\(\dfrac{1}{2}\)x2y3-z4

6 tháng 3 2022

\(A=\dfrac{1}{5}x^2y^3+\dfrac{2}{3}x^2y^3-\dfrac{3}{4}x^2y^3+x^2y^3=\left(\dfrac{1}{5}+\dfrac{2}{3}-\dfrac{3}{4}+1\right)x^2y^3=\dfrac{67}{60}x^2y^3\\ B=\left(x^2y\right)^3\left(\dfrac{1}{2}xy^2z\right)^2=x^6y^3.\dfrac{1}{4}x^2y^4z^2=\dfrac{1}{4}x^8y^7z^2\)

24 tháng 5 2017

a)\(P+Q=\left(x^2y+xy^2-5x^2y^2+x^3\right)+\left(3xy^2-x^2y+x^2y^2\right)\)

=\(x^2y+xy^2-5x^2y^2+x^3+3xy^2-x^2y+x^2y^2\)

=\(x^2y-x^2y+xy^2+3xy^2-5x^2y^2+x^2y^2+x^3\)

=\(4xy^2-4x^2y^2+x^3\)

b)\(M+N=\left(x^3+xy+y^2-x^2y^2-2\right)+\left(x^2y^2+5-y^2\right)\)

=\(x^3+xy+y^2-x^2y^2-2+x^2y^2+5-y^2\)

=\(x^3+xy+y^2-y^2-x^2y^2+x^2y^2-2+5\)

=\(x^3+xy+3\)

Bài dài nên chắc sẽ có sai sót, nếu đúng bạn nha

19 tháng 4 2017

a) Ta có: P = x2y + xy2 – 5x2y2 + x3 và Q = 3xy2 – x2y + x2y2

=> P + Q = x2y + xy2 – 5x2y2 + x3 + 3xy2 – x2y + x2y2

= x3 – 5x2y2 + x2y2 + x2y – x2y + xy2 + 3xy2

= x3 – 4x2y2 + 4xy2

b) Ta có: M = x3 + xy + y2 – x2y2 – 2 và N = x2y2 + 5 – y2.

=> M + N = x3 + xy + y2 – x2y2 – 2 + x2y2 + 5 – y2

= x3 – x2y2 + x2y2 + y2 – y2 + xy - 2 + 5

= x3 + xy + 3.



18 tháng 3 2018

a)

P + Q = x2y + xy2 – 5x2y2 + x3 + 3xy2 – x2y + x2y2

= x3 – 5x2y2 + x2y2 + x2y – x2y + xy2 + 3xy2

= x3 – 4x2y2 + 4xy2

b)

M + N = x3 + xy + y2 – x2y2 – 2 + x2y2 + 5 – y2

= x3 – x2y2 + x2y2 + y2 – y2 + xy - 2 + 5

= x3 + xy + 3.

24 tháng 2 2019

\(M=x^{2y^3}+x^{3y^2}-x^2+y^2+5-\left(x^{2y^3}+x^{3y^2}+2y^2-1\right)\)

\(\Rightarrow M=x^{2y^3}+x^{3y^2}-x^2+y^2+5-x^{2y^3}-x^{3y^2}-2y^2+1\)

\(\Rightarrow M=-x^2+y^2-2y^2+6\)

\(\Rightarrow M=-x^2-y^2+6\)

Có \(-x^2\le0;-y^2\le0\)

\(\Rightarrow M\le0+0+6=6\)

Vậy GTLN = 6 <=> x = 0;y=0

24 tháng 2 2019

Ta có:

M=(x^2y^3+x^3y^2-x^2+y^2+5)-(x^2y^3+x^3y^2+2y^2-1)

   =x^2y^3+x^3y^2-x^2+y^2+5-x^2y^3-x^3y^2-2y^2+1

   =(x^2y^3-x^2y^3)+(x^3y^2-x^3y^2)-x^2+(y^2-2y^2)+(5+1)

   =-x^2-y^2+6

   =-(x^2+y^2)+6

Vì \(x^2\ge0;y^2\ge0\)\(\Rightarrow\) \(x^2+y^2\ge0\)nên \(-\left(x^2+y^2\right)\le0\)

Vậy giá trị lớn nhất của biểu thức bằng 6 khi -(x^2+y^2)=0.

Chắc chắn đúng, t**k mik nhé!

P(x)+Q(x)

=3x^2y-2x+5xy^2-7y^2+3xy^2-7y^2-9x^2y-x-5

=8xy^2-14y^2-6x^2y-3x-5

=>Chọn A