K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2021

\(\frac{x^2-49}{x-7}+x-2=\frac{\left(x-7\right)\left(x+7\right)}{x-7}+\frac{\left(x-2\right)\left(x-7\right)}{x-7}\)

\(=\frac{\left(x-7\right)\left[\left(x+7\right)+\left(x-2\right)\right]}{x-7}=\frac{\left(x-7\right)\left(2x+5\right)}{x-7}=2x+5\)

Đặt \(2x+5=0\Leftrightarrow x=-\frac{5}{2}\)

Vậy \(x=-\frac{5}{2}\)

2 tháng 9 2020

Bài 1.

a) x( 8x - 2 ) - 8x2 + 12 = 0

<=> 8x2 - 2x - 8x2 + 12 = 0 

<=> 12 - 2x = 0

<=> 2x = 12

<=> x = 6

b) x( 4x - 5 ) - ( 2x + 1 )2 = 0

<=> 4x2 - 5x - ( 4x2 + 4x + 1 ) = 0

<=> 4x2 - 5x - 4x2 - 4x - 1 = 0

<=> -9x - 1 = 0

<=> -9x = 1

<=> x = -1/9

c) ( 5 - 2x )( 2x + 7 ) = ( 2x - 5 )( 2x + 5 )

<=> -4x2 - 4x + 35 = 4x2 - 25

<=> -4x2 - 4x + 35 - 4x2 + 25 = 0

<=> -8x2 - 4x + 60 = 0

<=> -8x2 + 20x - 24x + 60 = 0

<=> -4x( 2x - 5 ) - 12( 2x - 5 ) = 0

<=> ( 2x - 5 )( -4x - 12 ) = 0

<=> \(\orbr{\begin{cases}2x-5=0\\-4x-12=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{2}\\x=-3\end{cases}}\)

d) 64x2 - 49 = 0

<=> ( 8x )2 - 72 = 0

<=> ( 8x - 7 )( 8x + 7 ) = 0

<=> \(\orbr{\begin{cases}8x-7=0\\8x+7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\frac{7}{8}\\x=-\frac{7}{8}\end{cases}}\)

e) ( x2 + 6x + 9 )( x2 + 8x + 7 ) = 0

<=> ( x + 3 )2( x2 + x + 7x + 7 ) = 0

<=> ( x + 3 )[ x( x + 1 ) + 7( x + 1 ) ] = 0

<=> ( x + 3 )2( x + 1 )( x + 7 ) = 0

<=> x = -3 hoặc x = -1 hoặc x = -7

g) ( x2 + 1 )( x2 - 8x + 7 ) = 0

Vì x2 + 1 ≥ 1 > 0 với mọi x

=> x2 - 8x + 7 = 0

=> x2 - x - 7x + 7 = 0

=> x( x - 1 ) - 7( x - 1 ) = 0

=> ( x - 1 )( x - 7 ) = 0

=> \(\orbr{\begin{cases}x-1=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=7\end{cases}}\)

Bài 2.

a) ( x - 1 )2 - ( x - 2 )( x + 2 )

= x2 - 2x + 1 - ( x2 - 4 )

= x2 - 2x + 1 - x2 + 4

= -2x + 5

b) ( 3x + 5 )2 + ( 26x + 10 )( 2 - 3x ) + ( 2 - 3x )2

= 9x2 + 30x + 25 - 78x2 + 22x + 20 + 9x2 - 12x + 4

= ( 9x2 - 78x2 + 9x2 ) + ( 30x + 22x - 12x ) + ( 25 + 20 + 4 )

= -60x2 + 40x2 + 49

d) ( x + y )2 - ( x + y - 2 )2

= [ x + y - ( x + y - 2 ) ][ x + y + ( x + y - 2 ) ]

= ( x + y - x - y + 2 )( x + y + x + y - 2 )

= 2( 2x + 2y - 2 )

= 4x + 4y - 4

Bài 3.

 A = 3x2 + 18x + 33

= 3( x2 + 6x + 9 ) + 6 

= 3( x + 3 )2 + 6 ≥ 6 ∀ x

Đẳng thức xảy ra <=> x + 3 = 0 => x = -3

=> MinA = 6 <=> x = -3

B = x2 - 6x + 10 + y2

= ( x2 - 6x + 9 ) + y2 + 1

= ( x - 3 )2 + y2 + 1 ≥ 1 ∀ x,y

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-3=0\\y^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=0\end{cases}}\)

=> MinB = 1 <=> x = 3 ; y = 0

C = ( 2x - 1 )2 + ( x + 2 )2

= 4x2 - 4x + 1 + x2 + 4x + 4

= 5x2 + 5 ≥ 5 ∀ x

Đẳng thức xảy ra <=> 5x2 = 0 => x = 0

=> MinC = 5 <=> x = 0

D = -2/7x2 - 8x + 7 ( sửa thành tìm Max )

Để D đạt GTLN => 7x2 - 8x + 7 đạt GTNN

7x2 - 8x + 7 

= 7( x2 - 8/7x + 16/49 ) + 33/7

= 7( x - 4/7 )2 + 33/7 ≥ 33/7 ∀ x

Đẳng thức xảy ra <=> x - 4/7 = 0 => x = 4/7

=> MaxC = \(\frac{-2}{\frac{33}{7}}=-\frac{14}{33}\)<=> x = 4/7

25 tháng 7 2016

dang nhieu qua ban a

10 tháng 4 2019

Khó quá

10 tháng 4 2019

thế mới hỏi

15 tháng 9 2019

VP \(=-\left(9x^2+42x+49\right)+6x+14-17\)

\(=-9x^2-42x-49+6x+14-17\)

\(=-9x^2-36x-52\)

\(=-\left[\left(3x\right)^2+2.3.6x+6^2+16\right]\)

\(=-\left[\left(3x+6\right)^2+16\right]\le-16,\forall x\)

Để giải thích nè:  

1 ) \(\left(3x+6\right)^2\) : luôn là một số dương cho dù x có là dương hay âm đi nữa.

2 )   \(\left(3x+6\right)^2+16\) : một số dương mà cộng cho 16 thì luôn \(\ge16\)  ( nếu \(\left(3x+6\right)^2=0\)                                                                                                                                                                              thì   \(\left(3x+6\right)^2+16=16\)

3 ) \(-\left[\left(3x+6\right)^2+16\right]\) : nếu thêm dấu trừ ( - ) vào một số dương >16 (lớn hơn 16) thì số đó sẽ < -16 (bé hơn -16)

                                                         Ví dụ:  100 là số dương lớn hơn , thêm dấu trừ: -100  < -16

                                                         

                                                         nếu thêm dấu trừ ( - ) vào 16 thì sẽ bằng -16 :              -16 = -16 

VẬY KẾT LUẬN: \(-\left[\left(3x+6\right)^2+16\right]\) luôn luôn \(\le-16\) với mọi x 

3 tháng 8 2016

Ta có: (2x)2 -2.2x.3 +32 - 4.(x2 - 12) = 49

\(\Rightarrow\)4x2 - 12x + 9 - 4x2 + 4 = 49

\(\Rightarrow\)-12x = 49 - 9 - 4

\(\Rightarrow\)-12x = 36

\(\Rightarrow\)x = -3

9 tháng 8 2016

\(\left(2x+1\right)^2-4\left(x+2\right)^2=9\)

\(\left(2x+1\right)^2-\left[2\times\left(x+2\right)\right]^2=9\)

\(\left[\left(2x+1\right)-2\times\left(x+2\right)\right]\left[\left(2x+1\right)+2\times\left(x+2\right)\right]=9\)

\(\left(2x+1-2x-4\right)\left(2x+1+2x+4\right)=9\)

\(\left(-3\right)\left(4x+5\right)=9\)

\(4x+5=\frac{9}{-3}\)

\(4x+5=-3\)

\(4x=-3-5\)

\(4x=-8\)

\(x=-\frac{8}{4}\)

\(x=-2\)

***

\(3\left(x-1\right)^2-3x\left(x-5\right)=21\)

\(3\times\left[\left(x-1\right)^2-x\left(x-5\right)\right]=21\)

\(x^2-2x+1-x^2+5x=\frac{21}{3}\)

\(3x+1=7\)

\(3x=7-1\)

\(3x=6\)

\(x=\frac{6}{3}\)

\(x=2\)

***

\(\left(x+3\right)^2-\left(x-4\right)\left(x+8\right)=1\)

\(\left(x^2+2\times x\times3+3^2\right)-\left(x^2+8x-4x-32\right)=1\)

\(x^2+6x+9-x^2-8x+4x+32=1\)

\(2x=1-9-32\)

\(2x=-40\)

\(x=-\frac{40}{2}\)

\(x=-20\)

20 tháng 10 2017

hoc lop nao day cung