Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/\(\dfrac{8}{x-8}+1+\dfrac{11}{x-11}+1=\dfrac{9}{x-9}+1+\dfrac{10}{x-10}+1\)
=>\(\dfrac{8+x-8}{x-8}+\dfrac{11+x-11}{x-11}=\dfrac{9+x-9}{x-9}+\dfrac{10+x-10}{x-10}\)
=>\(\dfrac{x}{x-8}+\dfrac{x}{x-11}-\dfrac{x}{x-9}-\dfrac{x}{x-10}=0\)
=>x.\(\left(\dfrac{1}{x-8}+\dfrac{1}{x-11}+\dfrac{1}{x-9}+\dfrac{1}{x-10}\right)=0\)
=>x=0
b/\(\dfrac{x}{x-3}-1+\dfrac{x}{x-5}-1=\dfrac{x}{x-4}-1+\dfrac{x}{x-6}-1\)
=>\(\dfrac{x-x+3}{x-3}+\dfrac{x-x+5}{x-5}-\dfrac{x-x+4}{x-4}-\dfrac{x-6+6}{x-6}=0\)
=>\(\dfrac{3}{x-3}+\dfrac{5}{x-5}-\dfrac{4}{x-4}-\dfrac{6}{x-6}=0\)
Đến đây thì bạn giải giống câu a
a/ ĐKXĐ: \(x\ne\left\{8;9;10;11\right\}\)
\(\frac{8}{x-8}+1+\frac{11}{x-11}+1=\frac{9}{x-9}+1+\frac{10}{x-10}+1\)
\(\Leftrightarrow\frac{x}{x-8}+\frac{x}{x-11}=\frac{x}{x-9}+\frac{x}{x-10}\)
\(\Leftrightarrow x\left(\frac{1}{x-8}-\frac{1}{x-9}+\frac{1}{x-11}-\frac{1}{x-10}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\frac{1}{x-9}-\frac{1}{x-8}=\frac{1}{x-11}-\frac{1}{x-10}\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\frac{1}{\left(x-9\right)\left(x-8\right)}=\frac{1}{\left(x-11\right)\left(x-10\right)}\)
\(\Leftrightarrow x^2-17x+72=x^2-21x+110\)
\(\Rightarrow x=\frac{19}{2}\)
b/ ĐK: \(x\ne\left\{3;4;5;6\right\}\)
\(\frac{x}{x-3}-\frac{x}{x-5}=\frac{x}{x-4}-\frac{x}{x-6}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\frac{1}{x-3}-\frac{1}{x-5}=\frac{1}{x-4}-\frac{1}{x-6}\left(2\right)\end{matrix}\right.\)
\(\left(2\right)\Leftrightarrow\frac{-2}{\left(x-3\right)\left(x-5\right)}=\frac{-2}{\left(x-4\right)\left(x-6\right)}\)
\(\Leftrightarrow x^2-8x+15=x^2-10x+24\)
\(\Rightarrow x=\frac{9}{2}\)
\(\frac{8}{x-8}+\frac{11}{x-11}=\frac{9}{x-9}+\frac{10}{x-10}\)<=> \(\frac{8}{x-8}+1+\frac{11}{x-11}+1=\frac{9}{x-9}+1+\frac{10}{x-10}+1\)
<=>\(\frac{8+x-8}{x-8}+\frac{11+x-11}{x-11}=\frac{9+x-9}{x-9}+\frac{10+x-10}{x-10}\)
<=>\(\frac{x}{x-8}+\frac{x}{x-11}=\frac{x}{x-9}+\frac{x}{x-10}\)
<=>\(\frac{x}{x-8}+\frac{x}{x-11}-\frac{x}{x-9}-\frac{x}{x-10}=0\)
<=>\(x\left(\frac{1}{x-8}+\frac{1}{x-11}-\frac{1}{x-9}-\frac{1}{x-10}\right)=0\)
=>\(\orbr{\begin{cases}x=0\\\frac{1}{x-8}+\frac{1}{x-11}-\frac{x}{x-9}-\frac{x}{x-10}=0\end{cases}}\)
đến đoạn bạn giải tiếp nhé
\(\frac{8}{x-8}+\frac{11}{x-11}=\frac{9}{x-9}+\frac{10}{x-10}\)
\(-537x^2+5054x=-541x^2+5092x\)
\(-537x^2+5054x+541x^2-5092x=0\)
\(4x^2-38x=0\)
\(x\left(2x-19\right)=0\)
\(\orbr{\begin{cases}x=0\\2x=19\end{cases}}\)
\(\orbr{\begin{cases}x=0\\x=\frac{19}{2}\end{cases}}\)
Câu A
X + (X+1) + (X+3) +...+ (X+2003) = 2004
Số số hạng trong tổng 1 + 3 + ... + 2003 là
(2003 - 1) : 2 + 1 = 1002
Tổng dãy 1 + 3 + ... + 2003 là:
(1 + 2003) * 1002 : 2 = 1004004
=> (1003.X) + 1004004 = 2004
=> (1003.X)= 2004 - 1004004
=> 1003.X = - 1002000
X = - 1002000/1003
E chỉ giải đc đến đây thui!!!!!!!!!!!!!!! :)))
x + ( x + 1) + (x + 3) ... + (x + 2003) = 2004
x + x + x + ... + x (có 1003 x) + 1 + 3 + 5 + ... + 2003 = 2004
x . 1003 + 1004004 = 2004
x . 1003 = 2004 - 1004004
x . 1003 = -1002000
x = -1002000 : 1003
x = -999,00299 = ~-999
\(A=\dfrac{3x^2-6x+17}{x^2-2x+5}\)
= \(\dfrac{3x^2-6x+15+2}{x^2-2x+5}\)
=\(\dfrac{3\left(x^2-2x+5\right)+2}{x^2-2x+5}\)
= \(\dfrac{3\cdot\left(x^2-2x+5\right)}{x^2-2x+5}+\dfrac{2}{x^2-2x+5}\)
= \(3+\dfrac{2}{x^2-2x+5}\)
= \(3+\dfrac{2}{x^2-2x+1+4}\)
= \(3+\dfrac{2}{\left(x-1\right)^2+4}\)
vì (x-1)2 ≥ 0 ∀ x
⇔ (x-1)2 +4 ≥ 4
⇔\(\dfrac{2}{\left(x-1\right)^2+4}\le\dfrac{1}{2}\)
⇔\(3+\dfrac{2}{\left(x-1\right)^2+4}\le\dfrac{7}{2}\)
⇔ A \(\le\dfrac{7}{2}\)
⇔ Min A =\(\dfrac{7}{2}\)
khi x-1=0
⇔ x=1
vậy ....
Ta có:\(B=\dfrac{2x^2-16x+41}{x^2-8x+22}\)
\(B=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}\)
\(B=2-\dfrac{3}{x^2-8x+16+6}\)
\(B=2-\dfrac{3}{\left(x-4\right)^2+6}\ge2-\dfrac{3}{6}=\dfrac{5}{2}\)
\(\Rightarrow MINB=\dfrac{5}{2}\Leftrightarrow x=4\)
Bài 2
\( a)4{\left( {x + 1} \right)^2} + {\left( {2x - 1} \right)^2} - 8\left( {x - 1} \right)\left( {x + 1} \right) = 11\\ \Leftrightarrow 4\left( {{x^2} + 2x + 1} \right) + 4{x^2} - 4x + 1 - 8\left( {{x^2} - 1} \right) = 11\\ \Leftrightarrow 4{x^2} + 8x + 4 + 4{x^2} - 4x + 1 - 8{x^2} + 8 = 11\\ \Leftrightarrow 4x + 13 = 11\\ \Leftrightarrow 4x = 11 - 13\\ \Leftrightarrow 4x = - 2\\ \Leftrightarrow x = - \dfrac{1}{2} \)
Bài 2:
\( b)\left( {x - 3} \right)\left( {{x^2} + 3x + 9} \right) + x\left( {x + 2} \right)\left( {2 - x} \right) = 1\\ \Leftrightarrow {x^3} - 27 + x\left( {2 + x} \right)\left( {2 - x} \right) = 1\\ \Leftrightarrow {x^3} - 27 + x\left( {4 - {x^2}} \right) = 1\\ \Leftrightarrow {x^3} - 27 + 4x - {x^3} = 1\\ \Leftrightarrow 4x = 1 + 27\\ \Leftrightarrow 4x = 28\\ \Leftrightarrow x = 7 \)
d. ĐKXĐ: x khác 1, x khác 3
\(\dfrac{x+5}{x-1}=\dfrac{x+1}{\left(x-3\right)}-\dfrac{8}{x^2-4x+3}\)
\(\Leftrightarrow\dfrac{\left(x-3\right)\left(x+5\right)}{\left(x-1\right)\left(x-3\right)}=\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x-3\right)}-\dfrac{8}{\left(x-1\right)\left(x-3\right)}\) \(\Leftrightarrow x^2+2x-15=x^2-1-8\)
\(\Leftrightarrow2x-15+1+8=0\)
\(\Leftrightarrow2x-6=0\)
\(\Leftrightarrow x=3\) (loại)
Vậy pt vô nghiệm
Câu a :
\(x^2+6x+9=\left(x+3\right)^2\)
Câu b :
\(10x-25-x^2=-\left(x^2-10x+25\right)=-\left(x-5\right)^2\)
Câu c :
\(8x^3-\dfrac{1}{8}=\left(2x\right)^3-\left(\dfrac{1}{2}\right)^3\) \(=\left(2x-\dfrac{1}{2}\right)\left[\left(2x\right)^2+\dfrac{1}{2}.2x+\left(\dfrac{1}{2}\right)^2\right]\)
Cau d :
\(\dfrac{1}{25}x^2-64y^2=\left(\dfrac{1}{5}\right)^2-\left(8y\right)^2=\left(\dfrac{1}{5}+8\right)\left(\dfrac{1}{5}-8\right)\)