![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a.\sqrt{\frac{2-\sqrt{3}}{2}}+\frac{1-\sqrt{3}}{2}\)
\(=\sqrt{\frac{2\left(2-\sqrt{3}\right)}{4}}+\frac{1-\sqrt{3}}{2}\)
\(=\frac{\sqrt{4-2\sqrt{3}}}{2}+\frac{1-\sqrt{3}}{2}\)
\(=\frac{\sqrt{\left(\sqrt{3}-1\right)^2}}{2}+\frac{1-\sqrt{3}}{2}\)
\(=\frac{\sqrt{3}-1+1-\sqrt{3}}{2}\) ( Vì \(\sqrt{3}-1>0\))
\(=0\)
b) \(\frac{1}{2+\sqrt{3}}+\frac{\sqrt{2}}{\sqrt{6}}-\frac{2}{3+\sqrt{3}}\)
\(=\frac{2-\sqrt{3}}{2^2-\left(\sqrt{3}\right)^2}+\frac{\sqrt{3}}{3}-\frac{2\left(3-\sqrt{3}\right)}{3^2-\left(\sqrt{3}\right)^2}\)
\(=2-\sqrt{3}+\sqrt{3}-\frac{3-\sqrt{3}}{3}\)
\(=\frac{6-3+\sqrt{3}}{3}\)
\(=\frac{3+\sqrt{3}}{3}=\frac{\sqrt{3}+1}{\sqrt{3}}\)
c) \(\frac{3}{2+\sqrt{3}}+\frac{13}{4-\sqrt{3}}+\frac{6}{\sqrt{3}}\)
\(=\frac{2\left(2-\sqrt{3}\right)}{1}+\frac{13\left(1+\sqrt{3}\right)}{13}+2\sqrt{3}\)
\(=4-2\sqrt{3}+1-\sqrt{3}+2\sqrt{3}\)
\(=5-\sqrt{3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
b/ \(\frac{2\sqrt{2}-1}{\sqrt{2}-1}+\frac{3\sqrt{2}-2}{\sqrt{2}-3}=\frac{\left(2\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}{1}+\frac{\left(2-3\sqrt{2}\right)\left(3+\sqrt{2}\right)}{\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)}\)
\(=3+\sqrt{2}+\frac{-7\sqrt{2}}{7}=3\)
c/ \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+30\sqrt{2+\sqrt{\left(2\sqrt{2}+1\right)^2}}}\)
\(=\sqrt{13+30\sqrt{\left(\sqrt{2}+1\right)^2}}=\sqrt{43+30\sqrt{2}}=\sqrt{\left(5+3\sqrt{2}\right)^2}=5+3\sqrt{2}\)
Mình đưa ra đáp án thôi nhé :)
a/ \(\left(\sqrt{\frac{5}{3}-\sqrt{\frac{3}{5}}}\right).\sqrt{15}=\sqrt{25-3\sqrt{15}}\)
b/ \(\frac{2\sqrt{2}-1}{\sqrt{2}-1}+\frac{3\sqrt{2}-2}{\sqrt{2}-3}=3\)
c/ \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=5+3\sqrt{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\sqrt{13-4\sqrt{3}}=\sqrt{12+1-2\sqrt{12}}=\sqrt{\left(\sqrt{12}-1\right)^2}=\sqrt{12}-1\)
\(\frac{\sqrt{4+\sqrt{7}}}{\sqrt{2}}=\frac{\sqrt{8+2\sqrt{7}}}{2}=\frac{\sqrt{7+1+2\sqrt{7}}}{2}=\frac{\sqrt{\left(\sqrt{7}+1\right)^2}}{2}=\frac{\sqrt{7}+1}{2}\)
\(\frac{\sqrt{10+3\sqrt{11}}}{2\sqrt{2}}=\frac{\sqrt{20+2\sqrt{99}}}{2}=\frac{\sqrt{9+11+2\sqrt{99}}}{2}=\frac{\sqrt{\left(\sqrt{9}+\sqrt{11}\right)^2}}{2}=\frac{\sqrt{9}+\sqrt{11}}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Ta có : \(x=\sqrt{3+2\sqrt{2}}+\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(3-\sqrt{2}\right)^2}=4\)
Thay x = 4 => \(\sqrt{x}=2\) vào B ta được :
\(B=\frac{2+5}{2-3}=-7\)
b, Ta có : Với \(x\ge0;x\ne9\)
\(A=\frac{4}{\sqrt{x}+3}+\frac{2x-\sqrt{x}-13}{x-9}-\frac{\sqrt{x}}{\sqrt{x}-3}\)
\(=\frac{4\left(\sqrt{x}-3\right)+2x-\sqrt{x}-13-\sqrt{x}\left(\sqrt{x}+3\right)}{x-9}\)
\(=\frac{4\sqrt{x}-12+2x-\sqrt{x}-13-x-3\sqrt{x}}{x-9}=\frac{x-25}{x-9}\)
Lại có \(P=\frac{A}{B}\Rightarrow P=\frac{\frac{x-25}{x-9}}{\frac{\sqrt{x}+5}{\sqrt{x}-3}}=\frac{\sqrt{x}-5}{\sqrt{x}+3}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Với \(x\ge0;x\ne\frac{16}{9};4\)
\(P=\frac{2\sqrt{x}-4}{3\sqrt{x}-4}-\frac{4+2\sqrt{x}}{\sqrt{x}-2}+\frac{x+13\sqrt{x}-20}{3x-10\sqrt{x}+8}\)
\(=\frac{2x-8\sqrt{x}+8-4\sqrt{x}-6x+16+x+13\sqrt{x}-20}{\left(3\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{-3x+\sqrt{x}+4}{\left(3\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}=\frac{-\left(3\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}{\left(3\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+1}{2-\sqrt{x}}\)
b, \(P\ge-\frac{3}{4}\Rightarrow\frac{\sqrt{x}+1}{2-\sqrt{x}}+\frac{3}{4}\ge0\Leftrightarrow\frac{4\sqrt{x}+4+6-3\sqrt{x}}{8-4\sqrt{x}}\ge0\Leftrightarrow\frac{\sqrt{x}+10}{8-4\sqrt{x}}\ge0\)
\(\Rightarrow2-\sqrt{x}\ge0\Leftrightarrow x\le4\)Kết hợp với đk vậy \(0\le x< 4\)
Biểu thức đã cho bằng:
\(\sqrt{12+4\sqrt{3}+1}+\sqrt{\frac{2\left(2-\sqrt{3}\right)}{\left(2+\sqrt{3}\right)\left(2-\sqrt{3}\right)}}\)
\(=\sqrt{\left(2\sqrt{3}\right)^2+2.2\sqrt{3}+1}+\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{\left(2\sqrt{3}+1\right)^2}+\sqrt{3+2.\sqrt{3}+1}\)
\(=2\sqrt{3}+1+\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=2\sqrt{3}+1+\sqrt{3}-1\)
\(=3\sqrt{3}\)