S = 1 x 2 + 2 x 3 + 3 x 4 + .... + 98 x 99 + 99 x 100

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2023

\(S=1\cdot2+2\cdot3+3\cdot4+...+99\cdot100\\ 3S=1\cdot2\cdot3+2\cdot3\cdot3+3\cdot3\cdot4+...+3\cdot99\cdot100\\ 3S=1\cdot2\cdot3+2\cdot3\cdot\left(4-1\right)+3\cdot4\cdot\left(5-2\right)+...+99\cdot100\cdot\left(101-98\right)\\ 3S=1\cdot2\cdot3+2\cdot3\cdot4-1\cdot2\cdot3+....+99\cdot100\cdot101-98\cdot99\cdot100\\ 3S=99\cdot100\cdot101\\ S=\dfrac{99\cdot100\cdot101}{3}=33\cdot100\cdot101=3300\cdot101=333300\)

14 tháng 7 2015

x=99

=>x+1=100

thay x+1=100 và 99=x vào B ta được:

x99-(x+1).x98+(x+1).x97-(x+1).x96+...+(x+1).x-1

=x99-x99-x98+x98+x97-x97-x96+...+x2+x-1

=x-1

=99-1

=98

Vậy B=98

14 tháng 7 2015

trời                

14 tháng 7 2015

x=99

=>x+1=100

thay x+1=100 và 99=x vào B ta được:

x99-(x+1).x98+(x+1).x97-(x+1).x96+...+(x+1).x-1

=x99-x99-x98+x98+x97-x97-x96+...+x2+x-1

=x+1

=100

Vậy B=100

14 tháng 7 2015

SỬA

x=99

=>x+1=100

thay x+1=100 và 99=x vào B ta được:

x99-(x+1).x98+(x+1).x97-(x+1).x96+...+(x+1).x-1

=x99-x99-x98+x98+x97-x97-x96+...+x2+x-1

=x-1

=99-1

=98

Vậy B=98

5 tháng 3 2018

THAY X= -1; Y= 1 VÀO BIỂU THỨC

CÓ: \(\left(-1\right)^{100}.1^{100}+\left(-1\right)^{99}.1^{99}+\left(-1\right)^{98}.1^{98}+\left(-1\right)^2.1^2+\left(-1\right).1+1\)

\(=1+\left(-1\right)+1+...+1+\left(-1\right)+1\)

( gạch bỏ các cặp số 1+ (-1) )

\(=0+1\)

\(=0\)

KL: \(x^{100}y^{100}+x^{99}y^{99}+x^{98}y^{98}+...+x^2y^2+1=1\)TẠI X = -1; Y =1

CHÚC BN HỌC TỐT!!
 

8 tháng 11 2018

\(A=1.2.3+2.3.4+...+98.99.100\)

\(4A=1.2.3.\left(4-0\right)+2.3.4.\left(5-1\right)+....+98.99.100.\left(101-97\right)\)

\(4A=1.2.3.4+2.3.4.5-1.2.3.4+...+98.99.100.101-97.98.99.100\)

\(4A=98.99.100.101\)

\(A=\frac{98.99.100.101}{4}\)

17 tháng 11 2018

a/ \(\dfrac{x+1}{100}+\dfrac{x+2}{99}=\dfrac{x+3}{98}+\dfrac{x+4}{97}\)

\(\Leftrightarrow\left(\dfrac{x+1}{100}+1\right)+\left(\dfrac{x+2}{99}+1\right)=\left(\dfrac{x+3}{98}+1\right)+\left(\dfrac{x+4}{97}+1\right)\)

\(\Leftrightarrow\dfrac{x+101}{100}+\dfrac{x+101}{99}=\dfrac{x+101}{98}+\dfrac{x+101}{97}\)

\(\Leftrightarrow\dfrac{x+101}{100}+\dfrac{x+101}{99}-\dfrac{x+101}{98}-\dfrac{x+101}{97}=0\)

\(\Leftrightarrow\left(x+101\right)\left(\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{98}-\dfrac{1}{97}\right)=0\)

\(\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{98}-\dfrac{1}{97}\ne0\)

\(\Leftrightarrow x+101=0\)

\(\Leftrightarrow x=-101\)

Vậy...

b/ Đặt :

\(A=\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+.........+\dfrac{19}{9^2.10^2}\)

\(=\dfrac{2^2-1^2}{1^2.2^2}+\dfrac{3^2-2^2}{2^2.3^2}+....+\dfrac{10^2-9^2}{9^2.10^2}\)

\(=\dfrac{2^2}{1^2.2^2}-\dfrac{1^2}{1^2.2^2}+\dfrac{3^2}{2^2.3^2}-\dfrac{2^2}{2^2.3^2}+....+\dfrac{10^2}{9^2.10^2}-\dfrac{9^2}{9^2.10^2}\)

\(=1-\dfrac{1}{2^2}+\dfrac{1}{2^2}-\dfrac{1}{3^2}+...+\dfrac{1}{9^2}-\dfrac{1}{10^2}\)

\(=1-\dfrac{1}{10^2}< 1\)

\(\Leftrightarrow A< 1\left(đpcm\right)\)

Vậy...

c/ Với mọi x ta có :

\(\left|x-5\right|=\left|5-x\right|\)

\(\Leftrightarrow\left|x-10\right|+\left|x-5\right|=\left|x-10\right|+\left|5-x\right|\)

\(\Leftrightarrow A=\left|x-10\right|+\left|5-x\right|\)

\(\Leftrightarrow A\ge\left|x-10+5-x\right|\)

\(\Leftrightarrow A\ge5\)

Dấu "=" xảy ra

\(\Leftrightarrow\left(x-10\right)\left(5-x\right)\ge0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-10\ge0\\5-x\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}x-10\le0\\5-x\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x\ge10\\5\ge x\end{matrix}\right.\\\left\{{}\begin{matrix}x\le10\\5\le x\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x\in\varnothing\\5\le x\le10\end{matrix}\right.\)

Vậy..

17 tháng 10 2021

đcmcm

 

31 tháng 5 2019

Bài 1:

\(M\left(1\right)=a+b+6\)

Mà \(M\left(1\right)=0\)

\(\Rightarrow a+b+6=0\)

\(\Rightarrow a+b=-6\)( * )

\(\Rightarrow2a+2b=-12\) (1)

Ta có: \(M\left(-2\right)=4a-2b+6\)

Mà \(M\left(-2\right)=0\)

\(\Rightarrow4a-2b=-6\)(2)

Lấy (1) cộng (2) ta được:

\(6a=-18\)

\(a=-3\)

Thay a=-3 vào (* ) ta được:

\(b=-3\)

Vậy a=-3 ; b=-3

31 tháng 5 2019

Bài 2:

a) \(\frac{5}{x}+\frac{y}{4}=\frac{1}{8}\)

\(\Leftrightarrow\frac{1}{8}-\frac{y}{4}=\frac{5}{x}\)

\(\Leftrightarrow\frac{1}{8}-\frac{2y}{8}=\frac{5}{x}\)

\(\Leftrightarrow\frac{1-2y}{8}=\frac{5}{x}\)

\(\Leftrightarrow\left(1-2y\right).x=5.8\)

\(\Leftrightarrow\left(1-2y\right).x=40\)

Vì \(x,y\in Z\Rightarrow1-2y\in Z\)

mà \(40=1.40=40.1=5.8=8.5=\left(-1\right).\left(-40\right)=\left(-40\right).\left(-1\right)=\left(-5\right).\left(-8\right)=\left(-8\right).\left(-5\right)\)

Thử từng TH

3 tháng 12 2017

Đặt A = 1 . 2 . 3 + 2 . 3 . 4 + ... + 98 . 99 . 100

\(\Rightarrow\) 4A = 1 . 2 . 3 . 4 + 2 . 3 . 4 . (5 - 1) +...+ 98 . 99 . 100 . (101 - 97)

\(\Rightarrow\) 4A = 1 . 2 . 3 . 4 + 2 . 3 . 4 . 5 - 2 . 3 . 4 . 1 + ... + 98 . 99 . 100 . 101 - 98 . 99 . 100 . 97

\(\Rightarrow\) 4A = 98 . 99 . 100 . 101

\(\Rightarrow\) 4A = 97990200

\(\Rightarrow\) A = 24497550

4 tháng 1 2019

Đặt A = 1 . 2 . 3 + 2 . 3 . 4 + ... + 98 . 99 . 100

=>4A = 1 . 2 . 3 . 4 + 2 . 3 . 4 . (5 - 1) +...+ 98 . 99 . 100 . (101 - 97)

=>4A = 1 . 2 . 3 . 4 + 2 . 3 . 4 . 5 - 2 . 3 . 4 . 1 + ... + 98 . 99 . 100 . 101 - 98 . 99 . 100 . 97

=>4A = 98 . 99 . 100 . 101 4A = 97990200

=>A = 24497550

Vậy A= 24497550