Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1 + 1/2 + 1/3 + 1/4 + 1/5 + ... + 1/100
Ta đổi A = 2-1+1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+...+1/99-1/100
A= 2 - 1 - 1/100 =200/100 -100/100 - 1/100
A= 99/100
Cảm ơn bạn Kudo Shinichi, nhưng
1=2-1 ->ok
1/2=1-1/2 ->ok
1/3=1/2-1/3 -> sai
vì 1/2-1/3=1/6
P \(=\left(1-\frac{1}{2^2}\right).\left(1-\frac{1}{3^2}\right).\left(1-\frac{1}{4^2}\right)...\left(1-\frac{1}{50^2}\right)\)
P\(=\frac{2^2-1}{2^2}.\frac{3^2-1}{3^2}.\frac{4^2-1}{4^2}...\frac{50^2-1}{50^2}\)
P \(=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{49.51}{50.50}\)
P\(=\frac{\left(1.2.3...49\right).\left(3.4.5...51\right)}{\left(2.3.4...50\right).\left(2.3.4...50\right)}\)
P\(=\frac{1.51}{50.2}=\frac{51}{100}\)
\(P=1+\frac{1}{2}.\left(1+2\right)+\frac{1}{3}.\left(1+2+3\right)+....+\frac{1}{2016}.\left(1+2+3+...+2016\right)\)
\(P=1+\frac{1}{2}.3+\frac{1}{3}.6+\frac{1}{4}.10+....+\frac{1}{2016}.2033136\)
\(P=1+\frac{3}{2}+4+\frac{5}{2}+....+\frac{2017}{2}\)
\(P=\frac{2}{2}+\frac{3}{2}+\frac{4}{2}+\frac{5}{2}+....+\frac{2017}{2}\)
\(P=\frac{2+3+4+5+....+2017}{2}=\frac{2035152}{2}=1017576\)
\(A=\frac{1}{3^0}+\frac{1}{3^1}+\frac{1}{3^2}+...+\frac{1}{3^{2005}}\)
\(\Rightarrow3A=1+\frac{1}{3^0}+\frac{1}{3^1}+...+\frac{1}{3^{2004}}\)
\(\Rightarrow2A=1-\frac{1}{3^{2005}}\)
\(\Rightarrow A=\frac{3^{2005}-1}{3^{2005}.2}\)
\(S=\frac{1}{1+2}+\frac{1}{1+2+3}+\frac{1}{1+2+3+4}+...+\frac{1}{1+2+3+4+...+2017}\)
\(S=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{2035153}\)
\(S=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+....+\frac{2}{4070306}\)
\(S=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+....+\frac{2}{2017.2018}\)
\(S=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2017.2018}\right)\)
\(S=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2017}-\frac{1}{2018}\right)\)
\(S=2.\left(\frac{1}{2}-\frac{1}{2018}\right)=2.\frac{504}{1009}=\frac{1008}{1009}\)
Vậy \(S=\frac{1008}{1009}\)
Bài 1:
a)\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2016}-\frac{1}{2017}\)
\(=1-\frac{1}{2017}\)
\(=\frac{2016}{2017}\)
b)\(=1008\cdot\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2017}\right)\)
\(=1008\cdot\left(1-\frac{1}{2017}\right)\)
Bài 2:
a)\(A=\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{19.21}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{19}-\frac{1}{21}\)
\(=\frac{1}{3}-\frac{1}{21}\)
\(=\frac{2}{7}\)
b)\(B=\frac{5}{28}+\frac{5}{70}+...+\frac{5}{700}\)
\(=\frac{5}{4.7}+\frac{5}{7.10}+...+\frac{5}{25.28}\)
\(=\frac{5}{3}\left(\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{25}-\frac{1}{28}\right)\)
\(=\frac{5}{3}\left(\frac{1}{4}-\frac{1}{28}\right)\)
\(=\frac{5}{3}\cdot\frac{6}{28}\)
\(=\frac{15}{14}\)
Bài 3:
a)Đặt \(A=-\frac{20}{11.13}-\frac{20}{13.15}-...-\frac{20}{53.55}\)
\(=-\left(\frac{20}{11.13}+\frac{20}{13.15}+...+\frac{20}{53.55}\right)\)
\(=-\left[10\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{15}+...+\frac{1}{53}-\frac{1}{55}\right)\right]\)
\(=-\left[10\left(\frac{1}{11}-\frac{1}{55}\right)\right]\)
\(=-\left[10\cdot\frac{4}{55}\right]\)
\(=-\frac{8}{11}\).Thay vào ta có: \(x-\frac{8}{11}=\frac{2}{9}\)
\(\Leftrightarrow x=\frac{94}{99}\)
b)\(\frac{2}{42}+\frac{2}{56}+...+\frac{2}{x\left(x+1\right)}=\frac{2}{9}\)
\(2\left(\frac{1}{6.7}+\frac{1}{7.8}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{2}{9}\)
\(\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{1}{9}\)
\(\frac{1}{6}-\frac{1}{x+1}=\frac{1}{9}\)
\(\frac{1}{x+1}=\frac{1}{18}\)
\(x+1=18\)
\(x=17\)
2/
S = 2 + 22 + 23 +...+ 299
= (2+22+23) +...+ (297+298+299)
= 2(1+2+22)+...+297(1+2+22)
= 2.7 +...+ 297.7
= 7(2+...+297) chia hết cho 7
S = 2+22+23+...+299
= (2+22+23+24+25)+...+(295+296+297+298+299)
= 2(1+2+22+23+24)+...+295(1+2+22+23+24)
= 2.31+...+295.31
= 31(2+...+295) chia hết cho 31
3/
A = 1+5+52+....+5100 (1)
5A = 5+52+53+...+5101 (2)
Lấy (2) - (1) ta được
4A = 5101 - 1
A = \(\frac{5^{101}-1}{4}\)
4/
Đặt A là tên của biểu thức trên
Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=\frac{1}{1}-\frac{1}{2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)
........
\(\frac{1}{8^2}< \frac{1}{7.8}=\frac{1}{7}-\frac{1}{8}\)
\(\Rightarrow A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}=\frac{1}{1}-\frac{1}{8}=\frac{7}{8}< 1\)
Vậy...
5/
a, Gọi UCLN(n+1,2n+3) = d
Ta có : n+1 chia hết cho d => 2(n+1) chia hết cho d => 2n+2 chia hết cho d
2n+3 chia hết cho d
=> 2n+2 - (2n+3) chia hết cho d
=> -1 chia hết cho d => d = {-1;1}
Vậy...
b, Gọi UCLN(2n+3,4n+8) = d
Ta có: 2n+3 chia hết cho d => 2(2n+3) chia hết cho d => 4n+6 chia hết cho d
4n+8 chia hết cho d
=> 4n+6 - (4n+8) chia hết cho d
=> -2 chia hết cho d => d = {1;-1;2;-2}
Mà 2n+3 lẻ => d lẻ => d khác 2;-2 => d = {1;-1}
Vậy...
c) \(A=\frac{6}{4}+\frac{6}{28}+\frac{6}{70}+\frac{6}{130}+\frac{6}{208}\)
\(=\frac{6}{1.4}+\frac{6}{4.7}+\frac{6}{7.10}+\frac{6}{10.13}+\frac{6}{13.16}\)
\(=2\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+\frac{1}{13}-\frac{1}{16}\right)\)
\(=2\left(1-\frac{1}{16}\right)\)
\(=2.\frac{15}{16}\)
\(=\frac{15}{8}\)
Vậy A=\(\frac{15}{8}\)
a) \(\frac{3^2}{1.4}+\frac{3^2}{4.7}+\frac{3^2}{7.10}+...+\frac{3^2}{97.100}\)
\(=3\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{97.100}\right)\)
\(=3\left(1-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{97}-\frac{1}{100}\right)\)
\(=3\left(1-\frac{1}{100}\right)\)
\(=3.\frac{99}{100}=\frac{297}{100}\)
cau hoi nay ai chang lam dc
học vs hành, bỏ đi, bỏ đi, ra cái đề câu mô cụng hỏi rk hk mần chi