Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) \(\dfrac{1}{3}x+\dfrac{1}{5}-\dfrac{1}{2}x=1\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{1}{5}-\dfrac{1}{6}x=\dfrac{5}{4}\)
\(\Leftrightarrow\dfrac{1}{6}x=\dfrac{-21}{20}\)
\(\Leftrightarrow x=\dfrac{-63}{10}\)
Vậy ...
b) \(\dfrac{3}{2}\left(x+\dfrac{1}{2}\right)-\dfrac{1}{8}x=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{3}{2}x+\dfrac{3}{4}-\dfrac{1}{8}x=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{11}{8}x=\dfrac{-1}{2}\)
\(\Leftrightarrow x=\dfrac{-4}{11}\)
Vậy ...
Các câu sau làm tương tự câu b)
a, Ta có :\(A=\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}+\dfrac{1}{2^{50}}\\ \Rightarrow2A=1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}\\ \Rightarrow2A-A=\left(1+\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{49}}\right)-\left(\dfrac{1}{2^1}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{50}}\right)\\ \Rightarrow A=1-\dfrac{1}{2^{50}}< 1\\ \Rightarrow A< 1\) Vậy \(A< 1\)
b, Ta có :
\(B=\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\\ \Rightarrow3B=1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\\ \Rightarrow3B-B=\left(1+\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{99}}\right)-\left(\dfrac{1}{3^1}+\dfrac{1}{3^2}+...+\dfrac{1}{3^{100}}\right)\\ \Rightarrow2B=1-\dfrac{1}{3^{100}}< 1\\ \Rightarrow B< \dfrac{1}{2}\)Vậy \(B< \dfrac{1}{2}\)
c, Ta có :
\(C=\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{1000}}\\ \Rightarrow4C=1+\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{999}}\\\Rightarrow4C-C=\left(1+\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{999}}\right)-\left(\dfrac{1}{4^1}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{1000}}\right)\\ \Rightarrow3C=1-\dfrac{1}{4^{1000}}< 1\\ \Rightarrow C< \dfrac{1}{3}\)Vậy \(C< \dfrac{1}{3}\)
a: \(=\dfrac{5}{2}-\dfrac{563}{165}-\dfrac{4}{3}+\dfrac{1}{3}\cdot\left(\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{7}{2}\right)\)
\(=\dfrac{-247}{110}+\dfrac{1}{3}\cdot\dfrac{-5}{2}=\dfrac{-247}{110}+\dfrac{-5}{6}=\dfrac{-508}{165}\)
b: \(=\left[\dfrac{5}{9}\cdot\dfrac{2}{9}\right]:\left(\dfrac{10}{3}\cdot\dfrac{25}{23}\right)-\dfrac{22}{15}\cdot\dfrac{3}{4}\)
\(=\dfrac{10}{18}:\dfrac{250}{69}-\dfrac{66}{60}\)
\(=\dfrac{10}{18}\cdot\dfrac{69}{250}-\dfrac{11}{10}\)
\(=\dfrac{-71}{75}\)
a) \(P=\frac{1+2}{1^2.2^2}+\frac{2+3}{2^2.3^2}+...+\frac{9+10}{9^2.10^2}\)
\(P=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{9.10}\) ( rút gọn số mũ nhé )
\(P=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{9}-\frac{1}{10}\)
\(P=1-\frac{1}{10}=\frac{10}{10}-\frac{1}{10}=\frac{9}{10}\)
Vì \(\frac{9}{10}< 1\Rightarrow P< 1\) (đpcm)
b) Chút nữa mình làm nhé ^^
b)
\(Q=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
Đặt \(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\)
Ta so sánh giữa A và Q.
\(\frac{1}{1.2}>\frac{1}{3};\frac{1}{2.3}>\frac{1}{3^2};\frac{1}{3.4}>\frac{1}{3^3};....;\frac{1}{100.101}>\frac{1}{3^{100}}\)
\(\Rightarrow Q< A\)
Ta lại tiếp tục so sánh A và \(\frac{1}{2}\)
Ta có :
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\)
\(\Rightarrow A=\frac{1}{1}-\frac{1}{101}=\frac{100}{101}\Leftrightarrow A< \frac{1}{2}\)
Ta được:
\(Q< A< \frac{1}{2}\Leftrightarrow Q< \frac{1}{2}\)
\(a)3\dfrac{1}{2}.\dfrac{4}{49}-\left[2,\left(4\right):2\dfrac{5}{11}\right]:\left(\dfrac{-42}{5}\right)\)
\(=\dfrac{7}{2}.\dfrac{4}{49}-\dfrac{88}{27}:\left(\dfrac{-42}{7}\right)\)
\(=\dfrac{2}{7}-\dfrac{-220}{567}\)
\(=\dfrac{382}{567}\)
các phần con lại dễ nên bn tự lm đi nhé mk bn lắm
Chúc bạn học tốt!
a, \(\left(2-\dfrac{3}{2}\right)\left(2-\dfrac{4}{3}\right)\left(2-\dfrac{5}{4}\right)\left(2-\dfrac{6}{5}\right)\)
\(=\left(\dfrac{4}{2}-\dfrac{3}{2}\right)\left(\dfrac{6}{3}-\dfrac{4}{3}\right)\left(\dfrac{8}{4}-\dfrac{5}{4}\right)\left(\dfrac{10}{5}-\dfrac{6}{5}\right)\)
\(=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}\)
\(=\dfrac{1}{5}\)
b. \(\dfrac{1}{2002}+\dfrac{2003.2001}{2002}-2003\)\(=\dfrac{1}{2002}+\dfrac{2003.2001}{2002}-\dfrac{2003.2002}{2002}\) = \(\dfrac{1+2003.2001-2003.2002}{2002}\) = \(\dfrac{1+\left(2003\left(2001-2002\right)\right)}{2002}\) = \(\dfrac{1+2003.\left(-1\right)}{2002}\) = \(\dfrac{1+\left(-2003\right)}{2002}\) = \(\dfrac{-2002}{2002}=-1\)
Chúc nguyễn hồng nhung học tốt
\(A=17\dfrac{2}{31}-\left(\dfrac{15}{17}+6\dfrac{2}{31}\right)=17\dfrac{2}{31}-\dfrac{15}{17}-6\dfrac{2}{31}\)
\(=11-\dfrac{15}{17}=\dfrac{172}{17}\)
\(B=\left(31\dfrac{6}{13}+5\dfrac{9}{41}\right)-36\dfrac{6}{12}=36\dfrac{363}{533}-36\dfrac{6}{12}=\dfrac{193}{1066}\)
\(C=27\dfrac{51}{59}-\left(7\dfrac{51}{59}-\dfrac{1}{3}\right)=27\dfrac{51}{59}-7\dfrac{51}{59}+\dfrac{1}{3}=20+\dfrac{1}{3}=\dfrac{61}{3}\)
\(A=17\dfrac{2}{31}-\left(\dfrac{15}{17}+6\dfrac{2}{31}\right)=17\dfrac{2}{31}-\dfrac{15}{17}-6\dfrac{2}{31}\)
\(=\left(17\dfrac{2}{31}-6\dfrac{2}{31}\right)-\dfrac{15}{17}=11-\dfrac{15}{17}=\dfrac{172}{17}\)
\(B=\left(31\dfrac{6}{13}+5\dfrac{9}{41}\right)-36\dfrac{6}{12}=36\dfrac{363}{533}-36\dfrac{1}{2}=\dfrac{193}{1066}\) (Casio :>)
\(C=27\dfrac{51}{59}-\left(7\dfrac{51}{59}-\dfrac{1}{3}\right)=27\dfrac{51}{59}-7\dfrac{51}{59}+\dfrac{1}{3}\)
\(=20+\dfrac{1}{3}=\dfrac{61}{3}\)
b) \(B=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{2018}\right)\)
\(=\frac{2-1}{2}.\frac{3-1}{3}.\frac{4-1}{4}....\frac{2018-1}{2018}\)
\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2017}{2018}=\frac{1.2.3...2017}{2.3.4...2018}=\frac{1}{2018}\)
c) Giữa các biểu thức là dấu nhân hay dấu cộng vậy bạn?
d)
\(D=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(D=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+...+\frac{100-99}{99.100}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
e) \(E=\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+...+\frac{1}{97.99}\)
\(2E=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{97.99}\)
\(2E=\frac{5-3}{3.5}+\frac{7-5}{5.7}+\frac{9-7}{7.9}+....+\frac{99-97}{97.99}\)
\(2E=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{97}-\frac{1}{99}\)
\(=\frac{1}{3}-\frac{1}{99}=\frac{32}{99}\)
\(\Rightarrow E=\frac{16}{99}\)
<3